5 research outputs found

    Synthesis of Terminal Ribose Analogues of Adenosine 5′-Diphosphate Ribose as Probes for the Transient Receptor Potential Cation Channel TRPM2

    Get PDF
    TRPM2 (transient receptor potential cation channel, subfamily M, member 2) is a nonselective cation channel involved in the response to oxidative stress and in inflammation. Its role in autoimmune and neurodegenerative diseases makes it an attractive pharmacological target. Binding of the nucleotide adenosine 5′-diphosphate ribose (ADPR) to the cytosolic NUDT9 homology (NUDT9H) domain activates the channel. A detailed understanding of how ADPR interacts with the TRPM2 ligand binding domain is lacking, hampering the rational design of modulators, but the terminal ribose of ADPR is known to be essential for activation. To study its role in more detail, we designed synthetic routes to novel analogues of ADPR and 2′-deoxy-ADPR that were modified only by removal of a single hydroxyl group from the terminal ribose. The ADPR analogues were obtained by coupling nucleoside phosphorimidazolides to deoxysugar phosphates. The corresponding C2″-based analogues proved to be unstable. The C1″- and C3″-ADPR analogues were evaluated electrophysiologically by patch-clamp in TRPM2-expressing HEK293 cells. In addition, a compound with all hydroxyl groups of the terminal ribose blocked as its 1″-β-O-methyl-2″,3″-O-isopropylidene derivative was evaluated. Removal of either C1″ or C3″ hydroxyl groups from ADPR resulted in loss of agonist activity. Both these modifications and blocking all three hydroxyl groups resulted in TRPM2 antagonists. Our results demonstrate the critical role of these hydroxyl groups in channel activation.</p

    Reactive cyclic intermediates in the ProTide prodrugs activation: trapping the elusive pentavalent phosphorane

    No full text
    Contains fulltext : 200158.pdf (publisher's version ) (Closed access

    An efficient microwave-assisted synthesis and biological properties of polysubstituted pyrimidinyl- and 1,3,5-triazinylphosphonic acids

    No full text
    Polysubstituted pyrimidinylphosphonic and 1,3,5-triazinylphosphonic acids with potential biological properties were prepared in high yields by the microwave-assisted Michaelis Arbuzov reaction of trialkyl phosphite with the corresponding halopyrimidines and halo-1,3,5-triazines, respectively, followed by the standard deprotection of the phosphonate group using TMSBr in acetonitrile. 4,6-Diamino-5chloropyrimidin-2-ylphosphonic acid (7a) was found to exhibit a weak to moderate anti-influenza activity (28-50 uM) and may represent a novel hit for further SAR studies and antiviral improvement. (C) 2011 Elsevier Ltd. All rights reserved.status: publishe

    The effect of novel [3-fluoro-(2-phosphonoethoxy)propyl]purines on the inhibition of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine-guanine-(xanthine) phosphoribosyltransferases

    No full text
    Protozoan parasites from the Plasmodiidae family are the causative agents of malaria. Inhibition of hypoxanthine-guanine-(xanthine) phosphoribosyltransferase (HG(X)PRT) has been suggested as a target for development of new anti-malarial therapeutics. Acyclic nucleoside phosphonates (ANPs) are potent and selective inhibitors of plasmodial HG(X)PRTs. A new series of ANPs, based on the chemical structure and inhibitory activity of three ANPs, 2-(phosphonoethoxy)ethyl with either guanine or hypoxanthine as the base (PEEG and PEEHx) and 3-hydroxy-2-(phosphonomethoxy)propyl with guanine as the base (HPMPG), were prepared. These compounds are stereoisomers of 3-fluoro-(2-phosphonoethoxy)propyl (FPEPs) and 3-fluoro-(2-phosphonomethoxy) propyl (FPMPs) analogues. Both the (R)- and (S)-isomers of these fluorinated derivatives have higher K values (by 10- to 1000-fold) for human HGPRT and Plasmodium falciparum HGXPRT than the non-fluorinated ANPs. Possible explanations for these changes in affinity are proposed based on docking studies using the known crystal structures of human HGPRT in complex with PEEG

    Acyclic nucleoside phosphonates containing 9-deazahypoxanthine and a five-membered heterocycle as selective inhibitors of plasmodial 6-oxopurine phosphoribosyltransferases

    No full text
    Acyclic nucleoside phosphonates (ANPs) are an important class of therapeutic drugs that act as antiviral agents by inhibiting viral DNA polymerases and reverse transcriptases. ANPs containing a 6-oxopurine unit instead of a 6-aminopurine or pyrimidine base are inhibitors of the purine salvage enzyme, hypoxanthine-guanine-[xanthine] phosphoribosyltransferase (HG[X]PRT). Such compounds, and their prodrugs, are able to arrest the growth of Plasmodium falciparum (Pf) in cell culture. A new series of ANPs were synthesized and tested as inhibitors of human HGPRT, PfHGXPRT, and Plasmodium vivax (Pv) HGPRT. The novelty of these compounds is that they contain a five-membered heterocycle (imidazoline, imidazole, or triazole) inserted between the acyclic linker(s) and the nucleobase, namely, 9-deazahypoxanthine. Five of the compounds were found to be micromolar inhibitors of PfHGXPRT and PvHGPRT, but no inhibition of human HGPRT was observed under the same assay conditions. This demonstrates selectivity of these types of compounds for the two parasitic enzymes compared to the human counterpart and confirms the importance of the chemical nature of the acyclic moiety in conferring affinity/selectivity for these three enzymes
    corecore