14,948 research outputs found
Does solar structure vary with solar magnetic activity?
We present evidence that solar structure changes with changes in solar
activity. We find that the adiabatic index, Gamma_1, changes near the second
helium ionization, i.e., at a depth of about 0.98 R_sun. We believe that this
change is a result of the change in the effective equation of state caused by
magnetic fields. Inversions should be able to detect the changes in Gamma_1 if
mode sets with reliable and precise high-degree modes are available.Comment: To appear in ApJ Letter
Determining solar abundances using helioseismology
The recent downward revision of solar photospheric abundances of Oxygen and
other heavy elements has resulted in serious discrepancies between solar models
and solar structure as determined through helioseismology. In this work we
investigate the possibility of determining the solar heavy-element abundance
without reference to spectroscopy by using helioseismic data. Using the
dimensionless sound-speed derivative in the solar convection zone, we find that
the heavy element abundance, Z, of 0.0172 +/- 0.002, which is closer to the
older, higher value of the abundances.Comment: To appear in Ap
Scaling and universality in coupled driven diffusive models
Inspired by the physics of magnetohydrodynamics (MHD) a simplified coupled
Burgers-like model in one dimension (1d), a generalization of the Burgers model
to coupled degrees of freedom, is proposed to describe 1dMHD. In addition to
MHD, this model serves as a 1d reduced model for driven binary fluid mixtures.
Here we have performed a comprehensive study of the universal properties of the
generalized d-dimensional version of the reduced model. We employ both
analytical and numerical approaches. In particular, we determine the scaling
exponents and the amplitude-ratios of the relevant two-point time-dependent
correlation functions in the model. We demonstrate that these quantities vary
continuously with the amplitude of the noise cross-correlation. Further our
numerical studies corroborate the continuous dependence of long wavelength and
long time-scale physics of the model on the amplitude of the noise
cross-correlations, as found in our analytical studies. We construct and
simulate lattice-gas models of coupled degrees of freedom in 1d, belonging to
the universality class of our coupled Burgers-like model, which display similar
behavior. We use a variety of numerical (Monte-Carlo and Pseudospectral
methods) and analytical (Dynamic Renormalization Group, Self-Consistent
Mode-Coupling Theory and Functional Renormalization Group) approaches for our
work. The results from our different approaches complement one another.
Possible realizations of our results in various nonequilibrium models are
discussed.Comment: To appear in JSTAT (2009); 52 pages in JSTAT format. Some figure
files have been replace
Large Area Crop Inventory Experiment (LACIE). Second-generation sampling strategy evaluation report
The author has identified the following significant results. The stratification procedure in the new sampling strategy for LACIE included: (1) correlation test results indicating that an agrophysical stratum may be homogeneous with respect to agricultural density, but not with respect to wheat density; and (2) agrophysical unit homogeneity test results indicating that with respect to agricultural density many agrophysical units are not homogeneous, but removal of one or more refined strata from any such current agrophysical unit can make the strata homogeneous. The apportioning procedure results indicated that the current procedure is not performing well and that the apportioned estimates of refined strata wheat area are often unreliable
Relation between concurrence and Berry phase of an entangled state of two spin 1/2 particles
We have studied here the influence of the Berry phase generated due to a
cyclic evolution of an entangled state of two spin 1/2 particles. It is shown
that the measure of formation of entanglement is related to the cyclic
geometric phase of the individual spins. \\Comment: 6 pages. Accepted in Europhys. Letters (likely to be published in vol
73, pp1-6 (2006)
Improved calibration of the radii of cool stars based on 3D simulations of convection: implications for the solar model
Main sequence, solar-like stars (M < 1.5 Msun) have outer convective
envelopes that are sufficiently thick to affect significantly their overall
structure. The radii of these stars, in particular, are sensitive to the
details of inefficient, super-adiabatic convection occurring in their outermost
layers. The standard treatment of convection in stellar evolution models, based
on the Mixing-Length Theory (MLT), provides only a very approximate description
of convection in the super-adiabatic regime. Moreover, it contains a free
parameter, alpha_MLT, whose standard calibration is based on the Sun, and is
routinely applied to other stars ignoring the differences in their global
parameters (e.g., effective temperature, gravity, chemical composition) and
previous evolutionary history. In this paper, we present a calibration of
alpha_MLT based on three-dimensional radiation-hydrodynamics (3D RHD)
simulations of convection. The value of alpha_MLT is adjusted to match the
specific entropy in the deep, adiabatic layers of the convective envelope to
the corresponding value obtained from the 3D RHD simulations, as a function of
the position of the star in the (log g, log T_eff) plane and its chemical
composition. We have constructed a model of the present-day Sun using such
entropy-based calibration. We find that its past luminosity evolution is not
affected by the entropy calibration. The predicted solar radius, however,
exceeds that of the standard model during the past several billion years,
resulting in a lower surface temperature. This illustrative calculation also
demonstrates the viability of the entropy approach for calibrating the radii of
other late-type stars.Comment: 16 pages, 14 figures, accepted for publication in the Astrophysical
Journa
Standard Solar models in the Light of New Helioseismic Constraints II. Mixing Below the Convective Zone
In previous work, we have shown that recent updated standard solar models
cannot reproduce the radial profile of the sound speed at the base of the
convective zone (CZ) and fail to predict the Li7 depletion. In parallel,
helioseismology has shown that the transition from differential rotation in the
CZ to almost uniform rotation in the radiative solar interior occurs in a
shallow layer called the tachocline. This layer is presumably the seat of large
scale circulation and of turbulent motions. Here, we introduce a macroscopic
transport term in the structure equations, which is based on a hydrodynamical
description of the tachocline proposed by Spiegel and Zahn, and we calculate
the mixing induced within this layer. We discuss the influence of different
parameters that represent the tachocline thickness, the Brunt-Vaissala
frequency at the base of the CZ, and the time dependence of this mixing process
along the Sun's evolution. We show that the introduction of such a process
inhibits the microscopic diffusion by about 25%. Starting from models including
a pre-main sequence evolution, we obtain: a) a good agreement with the observed
photospheric chemical abundance of light elements such as He3, He4, Li7 and
Be9, b) a smooth composition gradient at the base of the CZ, and c) a
significant improvement of the sound speed square difference between the
seismic sun and the models in this transition region, when we allow the
phostospheric heavy element abundance to adjust, within the observational
incertitude, due to the action of this mixing process. The impact on neutrino
predictions is also discussed.Comment: 15 pages, 7 figures, to be published in ApJ (used emulateapj style
for latex2e). New email for A. S. Brun: [email protected]
Structure of the near-surface layers of the Sun: asphericity and time variation
We present results on the structure of the near-surface layers of the Sun
obtained by inverting frequencies of high-degree solar modes from "ring
diagrams". We have results for eight epochs between June 1996 and October 2003.
The frequencies for each epoch were obtained from ring diagrams constructed
from MDI Dopplergrams spanning complete Carrington rotations. We find that
there is a substantial latitudinal variation of both sound speed and the
adiabatic index Gamma_1 in the outer 2% of the Sun. We find that both the
sound-speed and Gamma_1 profiles change with changes in the level of solar
activity. In addition, we also study differences between the northern and
southern hemispheres of the Sun and find a small asymmetry that appears to
reflect the difference in magnetic activity between the two hemispheres.Comment: To appear in ApJ (January 2007
Driven Intrinsic Localized Modes in a Coupled Pendulum Array
Intrinsic localized modes (ILMs), also called discrete breathers, are
directly generated via modulational instability in an array of coupled
pendulums. These ILMs can be stabilized over a range of driver frequencies and
amplitudes. They are characterized by a pi-phase difference between their
center and wings. At higher driver frequencies, these ILMs are observed to
disintegrate via a pulsating instability, and the mechanism of this breather
instability is investigated.Comment: 5 pages, 6 figure
- …