28 research outputs found

    Altering Plant Defenses: Herbivore-Associated Molecular Patterns and Effector Arsenal of Chewing Herbivores

    Get PDF
    Chewing herbivores, such as caterpillars and beetles, while feeding on the host plant, cause extensive tissue damage and release a wide array of cues to alter plant defenses. Consequently, the cues can have both beneficial and detrimental impacts on the chewing herbivores. Herbivore-associated molecular patterns (HAMPs) are molecules produced by herbivorous insects that aid them to elicit plant defenses leading to impairment of insect growth, while effectors suppress plant defenses and contribute to increased susceptibility to subsequent feeding by chewing herbivores. Besides secretions that originate from glands (e.g., saliva) and fore- and midgut regions (e.g., oral secretions) of chewing herbivores, recent studies have shown that insect frass and herbivore-associated endosymbionts also play a critical role in modulating plant defenses. In this review, we provide an update on a growing body of literature that discusses the chewing insect HAMPs and effectors and the mechanisms by which they modulate host defenses. Novel “omic” approaches and availability of new tools will help researchers to move forward this discipline by identifying and characterizing novel insect HAMPs and effectors and how these herbivore-associated cues are perceived by host plant receptors

    Fall armyworm (Spodoptera frugiperda Smith) feeding elicits differential defense responses in upland and lowland switchgrass

    Get PDF
    Switchgrass (Panicum virgatum L.) is a low input, high biomass perennial grass being developed for the bioenergy sector. Upland and lowland cultivars can differ in their responses to insect herbivory. Fall armyworm [FAW; Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae)] is a generalist pest of many plant species and can feed on switchgrass as well. Here, in two different trials, FAW larval mass were significantly reduced when fed on lowland cultivar Kanlow relative to larvae fed on upland cultivar Summer plants after 10 days. Hormone content of plants indicated elevated levels of the plant defense hormone jasmonic acid (JA) and its bioactive conjugate JA-Ile although significant differences were not observed. Conversely, the precursor to JA, 12-oxo-phytodienoic acid (OPDA) levels were significantly different between FAW fed Summer and Kanlow plants raising the possibility of differential signaling by OPDA in the two cultivars. Global transcriptome analysis revealed a stronger response in Kanlow plant relative to Summer plants. Among these changes were a preferential upregulation of several branches of terpenoid and phenylpropanoid biosynthesis in Kanlow plants suggesting that enhanced biosynthesis or accumulation of antifeedants could have negatively impacted FAW larval mass gain on Kanlow plants relative to Summer plants. A comparison of the switchgrass-FAW RNA-Seq dataset to those from maize-FAW and switchgrass-aphid interactions revealed that key components of plant responses to herbivory, including induction of JA biosynthesis, key transcription factors and JA-inducible genes were apparently conserved in switchgrass and maize. In addition, these data affirm earlier studies with FAW and aphids that the cultivar Kanlow can provide useful genetics for the breeding of switchgrass germplasm with improved insect resistance

    Intraplant communication in maize contributes to defense against insects

    Get PDF
    The vasculature of plants act as a channel for transport of signal(s) that facilitate long-distance intraplant communication. In maize, Maize insect resistance1-Cysteine Protease (Mir1-CP), which has homology to papain-like proteases, provides defense to different feeding guilds of insect pests. Furthermore, accumulation of Mir1-CP in the vasculature suggests that Mir1-CP can potentially function as a phloemmobile protein. In a recent study, we provided evidence that Mir1-CP can curtail the growth of phloemsap sucking insect, corn leaf aphid (CLA; Rhopalosiphum maidis). Our current study further examined whether aboveground feeding by CLA can induce resistance to subsequent herbivory by belowground feeding western corn rootworm (WCR; Diabrotica virgifera virgifera). Aboveground feeding by CLA systemically induced the accumulation of Mir1-CP in the roots. Furthermore, foliage feeding by CLA provided enhanced resistance to subsequent herbivory by below ground feeding of WCR. Taken together, our previous findings and results presented here indicate that long-distance transport of Mir1-CP is critical for providing enhanced resistance to insect attack in maize

    Aboveground Herbivory Influences Belowground Defense Responses in Maize

    Get PDF
    The European corn borer (ECB; Ostrinia nubilalis) is an economically damaging insect pest of maize (Zea mays L.), an important cereal crop widely grown globally. Among inbred lines, the maize genotype Mp708 has shown resistance to diverse herbivorous insects, although several aspects of the defense mechanisms of Mp708 plants are yet to be explored. Here, the changes in root physiology arising from short-term feeding by ECB on the shoot tissues of Mp708 plants was evaluated directly using transcriptomics, and indirectly by monitoring changes in growth of western corn rootworm (WCR; Diabrotica virgifera virgifera) larvae. Mp708 defense responses negatively impacted both ECB and WCR larval weights, providing evidence for changes in root physiology in response to ECB feeding on shoot tissues. There was a significant downregulation of genes in the root tissues following short-term ECB feeding, including genes needed for direct defense (e.g., proteinase inhibitors and chitinases). Our transcriptomic analysis also revealed specific regulation of the genes involved in hormonal and metabolite pathways in the roots of Mp708 plants subjected to ECB herbivory. These data provide support for the long-distance signaling-mediated defense in Mp708 plants and suggest that altered metabolite profiles of roots in response to ECB feeding of shoots likely negatively impacted WCR growth

    Co-Transcriptomic Analysis of the Maize–Western Corn Rootworm Interaction

    Get PDF
    The Western corn rootworm (WCR; Diabrotica virgifera virgifera) is an economically important belowground pest of maize. Belowground feeding by WCR is damaging because it weakens the roots system, diminishes nutrient uptake, and creates entry points for fungal and bacterial pathogens and increases lodging, all of which can significantly suppress maize yields. Previously, it was demonstrated that belowground herbivory can trigger plant defense responses in the roots and the shoots, thereby impacting intraplant communication. Although several aspects of maize-WCR interactions have been reported, co-transcriptomic remodeling in the plant and insect are yet to be explored. We used a maize genotype, Mp708, that is resistant to a large guild of herbivore pests to study the underlying plant defense signaling network between below and aboveground tissues. We also evaluated WCR compensatory transcriptome responses. Using RNA-seq, we profiled the transcriptome of roots and leaves that interacted with WCR infestation up to 5 days post infestation (dpi). Our results suggest that Mp708 shoots and roots had elevated constitutive and WCR-feeding induced expression of genes related to jasmonic acid and ethylene pathways, respectively, before and after WCR feeding for 1 and 5 days. Similarly, extended feeding by WCR for 5 days in Mp708 roots suppressed many genes involved in the benzoxazinoid pathway, which is a major group of indolederived secondary metabolites that provides resistance to several insect pests in maize. Furthermore, extended feeding by WCR on Mp708 roots revealed several genes that were downregulated in WCR, which include genes related to proteolysis, neuropeptide signaling pathway, defense response, drug catabolic process, and hormone metabolic process. These findings indicate a dynamic transcriptomic dialog between WCR and WCR-infested maize plants

    Fall armyworm (Spodoptera frugiperda Smith) feeding elicits differential defense responses in upland and lowland switchgrass

    Get PDF
    Switchgrass (Panicum virgatum L.) is a low input, high biomass perennial grass being developed for the bioenergy sector. Upland and lowland cultivars can differ in their responses to insect herbivory. Fall armyworm [FAW; Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae)] is a generalist pest of many plant species and can feed on switchgrass as well. Here, in two different trials, FAW larval mass were significantly reduced when fed on lowland cultivar Kanlow relative to larvae fed on upland cultivar Summer plants after 10 days. Hormone content of plants indicated elevated levels of the plant defense hormone jasmonic acid (JA) and its bioactive conjugate JA-Ile although significant differences were not observed. Conversely, the precursor to JA, 12-oxo-phytodienoic acid (OPDA) levels were significantly different between FAW fed Summer and Kanlow plants raising the possibility of differential signaling by OPDA in the two cultivars. Global transcriptome analysis revealed a stronger response in Kanlow plant relative to Summer plants. Among these changes were a preferential upregulation of several branches of terpenoid and phenylpropanoid biosynthesis in Kanlow plants suggesting that enhanced biosynthesis or accumulation of antifeedants could have negatively impacted FAW larval mass gain on Kanlow plants relative to Summer plants. A comparison of the switchgrass-FAW RNA-Seq dataset to those from maize-FAW and switchgrass-aphid interactions revealed that key components of plant responses to herbivory, including induction of JA biosynthesis, key transcription factors and JA-inducible genes were apparently conserved in switchgrass and maize. In addition, these data affirm earlier studies with FAW and aphids that the cultivar Kanlow can provide useful genetics for the breeding of switchgrass germplasm with improved insect resistance

    Intraplant communication in maize contributes to defense against insects

    Get PDF
    The vasculature of plants act as a channel for transport of signal(s) that facilitate long-distance intraplant communication. In maize, Maize insect resistance1-Cysteine Protease (Mir1-CP), which has homology to papain-like proteases, provides defense to different feeding guilds of insect pests. Furthermore, accumulation of Mir1-CP in the vasculature suggests that Mir1-CP can potentially function as a phloemmobile protein. In a recent study, we provided evidence that Mir1-CP can curtail the growth of phloemsap sucking insect, corn leaf aphid (CLA; Rhopalosiphum maidis). Our current study further examined whether aboveground feeding by CLA can induce resistance to subsequent herbivory by belowground feeding western corn rootworm (WCR; Diabrotica virgifera virgifera). Aboveground feeding by CLA systemically induced the accumulation of Mir1-CP in the roots. Furthermore, foliage feeding by CLA provided enhanced resistance to subsequent herbivory by below ground feeding of WCR. Taken together, our previous findings and results presented here indicate that long-distance transport of Mir1-CP is critical for providing enhanced resistance to insect attack in maize

    Evaluation of reference genes for real-time quantitative PCR analysis in southern corn rootworm, \u3ci\u3eDiabrotica undecimpunctata howardi\u3c/i\u3e (Barber)

    Get PDF
    Quantitative reverse transcription PCR (RT-qPCR) is one of the most efficient, reliable and widely used techniques to quantify gene expression. In this study, we evaluated the performance of six southern corn rootworm, Diabrotica undecimpunctata howardi (Barber), housekeeping genes (HKG), β-actin (Actin), β-tubulin (Tubulin), elongation factor 1 alpha (EF1α), glyceraldehyde-3 phosphate dehydrogenase (GAPDH), 40 S ribosomal protein S9 (RpS9) and ubiquitin-conjugating protein (Ubi), under different experimental conditions such as developmental stage, exposure of neonate and adults to dsRNA, exposure of adults to different temperatures, different 3rd instar larva tissues, and neonate starvation. The HKGs were analyzed with four algorithms, including geNorm, NormFinder, BestKeeper, and delta-CT. Although the six HKGs showed a relatively stable expression pattern among different treatments, some variability was observed. Among the six genes, EF1α exhibited the lowest Ct values for all treatments while Ubi exhibited the highest. Among life stages and across treatments, Ubi exhibited the least stable expression pattern. GAPDH, Actin, and EF1α were among the most stable HKGs in the majority of the treatments. This research provides HKG for accurate normalization of RTqPCR data in the southern corn rootworm. Furthermore, this information can contribute to future genomic and functional genomic research in Diabrotica species

    Evaluation of reference genes for real-time quantitative PCR analysis in southern corn rootworm, \u3ci\u3eDiabrotica undecimpunctata howardi\u3c/i\u3e (Barber)

    Get PDF
    Quantitative reverse transcription PCR (RT-qPCR) is one of the most efficient, reliable and widely used techniques to quantify gene expression. In this study, we evaluated the performance of six southern corn rootworm, Diabrotica undecimpunctata howardi (Barber), housekeeping genes (HKG), β-actin (Actin), β-tubulin (Tubulin), elongation factor 1 alpha (EF1α), glyceraldehyde-3 phosphate dehydrogenase (GAPDH), 40 S ribosomal protein S9 (RpS9) and ubiquitin-conjugating protein (Ubi), under different experimental conditions such as developmental stage, exposure of neonate and adults to dsRNA, exposure of adults to different temperatures, different 3rd instar larva tissues, and neonate starvation. The HKGs were analyzed with four algorithms, including geNorm, NormFinder, BestKeeper, and delta-CT. Although the six HKGs showed a relatively stable expression pattern among different treatments, some variability was observed. Among the six genes, EF1α exhibited the lowest Ct values for all treatments while Ubi exhibited the highest. Among life stages and across treatments, Ubi exhibited the least stable expression pattern. GAPDH, Actin, and EF1α were among the most stable HKGs in the majority of the treatments. This research provides HKG for accurate normalization of RTqPCR data in the southern corn rootworm. Furthermore, this information can contribute to future genomic and functional genomic research in Diabrotica species

    Evaluation of reference genes for real-time quantitative PCR analysis in southern corn rootworm, \u3ci\u3eDiabrotica undecimpunctata howardi\u3c/i\u3e (Barber)

    Get PDF
    Quantitative reverse transcription PCR (RT-qPCR) is one of the most efficient, reliable and widely used techniques to quantify gene expression. In this study, we evaluated the performance of six southern corn rootworm, Diabrotica undecimpunctata howardi (Barber), housekeeping genes (HKG), β-actin (Actin), β-tubulin (Tubulin), elongation factor 1 alpha (EF1α), glyceraldehyde-3 phosphate dehydrogenase (GAPDH), 40 S ribosomal protein S9 (RpS9) and ubiquitin-conjugating protein (Ubi), under different experimental conditions such as developmental stage, exposure of neonate and adults to dsRNA, exposure of adults to different temperatures, different 3rd instar larva tissues, and neonate starvation. The HKGs were analyzed with four algorithms, including geNorm, NormFinder, BestKeeper, and delta-CT. Although the six HKGs showed a relatively stable expression pattern among different treatments, some variability was observed. Among the six genes, EF1α exhibited the lowest Ct values for all treatments while Ubi exhibited the highest. Among life stages and across treatments, Ubi exhibited the least stable expression pattern. GAPDH, Actin, and EF1α were among the most stable HKGs in the majority of the treatments. This research provides HKG for accurate normalization of RTqPCR data in the southern corn rootworm. Furthermore, this information can contribute to future genomic and functional genomic research in Diabrotica species
    corecore