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CURRENT REVIEW
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Chewing herbivores, such as caterpillars and beetles, while
feeding on the host plant, cause extensive tissue damage and
release a wide array of cues to alter plant defenses. Conse-
quently, the cues can have both beneficial and detrimental
impacts on the chewing herbivores. Herbivore-associated mo-
lecular patterns (HAMPs) are molecules produced by herbiv-
orous insects that aid them to elicit plant defenses leading to
impairment of insect growth, while effectors suppress plant
defenses and contribute to increased susceptibility to subse-
quent feeding by chewing herbivores. Besides secretions that
originate from glands (e.g., saliva) and fore- and midgut re-
gions (e.g., oral secretions) of chewing herbivores, recent stud-
ies have shown that insect frass and herbivore-associated
endosymbionts also play a critical role in modulating plant de-
fenses. In this review, we provide an update on a growing body
of literature that discusses the chewing insect HAMPs and ef-
fectors and the mechanisms by which they modulate host de-
fenses. Novel “omic” approaches and availability of new tools
will help researchers to move forward this discipline by iden-
tifying and characterizing novel insect HAMPs and effectors
and how these herbivore-associated cues are perceived by host
plant receptors.

Plants deploy a diverse array of defensive strategies to over-
come stress caused by insect attack. Simultaneously, insects pro-
duce a suite of herbivore-associated molecular patterns (HAMPs),
analogous to pathogen-associated molecular patterns or microbe-
associated molecular patterns in pathogens or microbes (Felton
and Tumlinson 2008; Felton et al. 2014; Mithöfer and Boland
2008), and effectors to manipulate the plant defenses. The term
“effectors” has been described as molecules secreted by patho-
gens and microbes that either elicit or suppress plant defenses
(Asai and Shirasu 2015; Hewezi 2015; Lo Presti et al. 2015).
However, in the context of this review, we define insect molecules
that induce plant defenses as HAMPs or elicitors whereas those
that suppress plant defenses and promote host susceptibility as
effectors. These HAMPs and effectors could arise from insect
oral secretions (OS) (regurgitant), saliva, ventral eversible gland
(VEG) secretions, digestive waste products (e.g., frass), ovipo-
sitional fluids, and herbivore-associated endosymbionts. In ad-
dition, upon insect feeding, plants produce various endogenous
wound signals (e.g., peptides) to activate the downstream defense
responses (Heil et al. 2012; Huffaker et al. 2013).

Upon recognition of these multiple insect-derived cues,
plants orchestrate appropriate defenses against attacking insect
pests, although some of these defense responses are specific to
a particular feeding guild of insect pests (Bonaventure 2012;
Erb et al. 2012; Howe and Jander 2008). Several studies have
shown that the insect feeding interferes with the plant stress
hormones, secondary metabolism, defense proteins, resource
reallocation, leaf senescence, and modulations in photosystem
II to suppress or activate the plant defenses (Halitschke et al.
2011; Korpita et al. 2014; Louis et al. 2013b; Robert et al. 2014).
For example, maize utilizes jasmonic acid (JA) and downstream
genes that encode defense proteins to mount appropriate defenses
against feeding by chewing insects (Chuang et al. 2014). Further,
feeding by chewing insects results in the activation of the sali-
cylic acid (SA) pathway, which, in turn, suppresses the JA related
defenses, rendering the plants susceptible to subsequent herbiv-
ory by chewing insects (Chung et al. 2013). The crosstalk be-
tween SA and JA pathways (Koornneef and Pieterse 2008; Thaler
et al. 2012) are highly induced by the effectors present in the
insect secretions for their own benefit. However, a few studies
have concluded that plant defense to chewing herbivores are also
mediated through both JA- and SA-independent defense path-
ways (Consales et al. 2012; Hettenhausen et al. 2013). In this re-
view, we will discuss the recent progress made in the field of
chewing insect HAMPs and effectors and how they are involved
in modulating plant defenses. We will focus our discussion on
chewing herbivores and direct readers to other recent reviews that
focus on piercing/sucking insects (e.g., aphids) (Kaloshian and
Walling 2016; Rao et al. 2016; van Bel and Will 2016).

HAMPSANDEFFECTORSOFCHEWINGHERBIVORES

OS or regurgitant.
The OS or regurgitant refers to the secretions that originate

from the caterpillar mid- and foregut (Peiffer and Felton 2009).
These secretions are released through the oral cavity situated
between the caterpillar mandibles. Several HAMPs identified
in the OS include, volicitin (fatty acid–amino acid conjugates
[FACs]), caeliferins (sulfated fatty acids), and inceptins (plant-
derived peptide fragments) (Alborn et al. 1997, 2007; Schmelz
et al. 2007). Some of these HAMPs present in the insect OS are
well-studied (e.g., FACs), and studies conducted by several
groups have indicated that these HAMPs can activate mitogen-
activated protein kinases (MPK) and accumulation of various
secondary metabolites and defense proteins and cause changes
in phytohormone-signaling pathways that impact insect phys-
iology, leading to impairment of larval growth (Halitschke et al.
2003; Hermsmeier et al. 2001; Kahl et al. 2000; Schäfer
et al. 2015; Wu et al. 2007; Zavala et al. 2004) (Table 1). The
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interplay among HAMPs, activation of indirect defenses by
augmenting the plant volatile profiles, and strategies by which
host plants recruit predators or parasitoids of the attacking
herbivore are well-documented (Alborn et al. 1997, 2003, 2007;
Kessler and Baldwin 2001; Turlings et al. 1990, 1993). HAMPs
could also modulate defenses by rapidly accumulating various
oxylipins, such as 12-oxo-phytodienoic acid (OPDA), the pre-
cursor of JA and JA-isoleucine (Meza-Canales et al. 2017;
Schäfer et al. 2011). OPDA is reported to function as a wound-
induced signaling molecule in plants and activate defense re-
sponses against several insects (Bosch et al. 2014a and b; Guo
et al. 2014; López-Galiano et al. 2017; Park et al. 2013; Stintzi
et al. 2001; Taki et al. 2005). The OS from insects that are
deposited on the plant surface also activate many of the early
signaling events. For instance, OS of Spodoptera littoralis in-
duced a rapid change in the transmembrane potential (Vm) that
triggers the proper activation of signaling cascades in host plants

against insect attack (Guo et al. 2013). Similarly, feeding by
Schistocerca gregaria, a generalist grasshopper herbivore, swiftly
increased cytosolic calcium levels, MPK3 andMPK6 activity, and
ethylene (ET) emission (Schäfer et al. 2011). Interestingly, it was
not the caeliferins present in grasshopper OS that activated the
defense response, but the lipase activity induced the rapid acti-
vation of defense responses in host plants, suggesting that multiple
HAMPs present in the insect OS act synergistically or indepen-
dently to modulate various defense responses in host plants.
Recently, a phospholipase C was also identified, in the se-

cretions of Spodoptera frugiperda (fall armyworm [FAW]), that
can modulate defense responses in various host plants (Acevedo
et al. 2017a). The OS of a polyphagous caterpillar, Ostrinia
nubilalis (Hübner) (European corn borer [ECB]), contained el-
evated levels of plant growth hormones such as auxin (Dafoe
et al. 2013). In this case, ECB might be using the OS-derived
auxin to enhance the nutritional quality and impact subsequent

Table 1. Herbivore-associated molecular patterns and effectors identified in various chewing herbivores and its effect on different host plantsa

Insect Source Component Host Response Reference

Helicoverpa armigera (cotton
bollworm)

Saliva GOX Nicotiana
tabacum

Suppressed nicotine
production

Zong and Wang 2004

OS ? Cicer arietinum Induction of JA and ET
pathways and simultaneous
suppression of
phytohormones such as
gibberelic acid and auxin

Pandey et al. 2017

Helicoverpa zea (corn
earworm/tomato fruitworm)

Saliva GOX N. tabacum
Solanum
lycopersicum

Suppressed induced defenses
and nicotine production in
tobacco whereas activated
both rapid and delayed-
induced defenses in tomato

Musser et al. 2002; Tian
et al. 2012

OS Endo-symbionts S. lycopersicum Induced antiherbivore
defenses and triggered the
production of more salivary
elicitors (e.g., GOX)

Wang et al. 2017

Frass ? S. lycopersicum
leaves

Activated herbivore defenses
without triggering pathogen
defenses

Ray et al. 2016b

Frass ? S. lycopersicum
fruits

Suppressed antiherbivore
defense genes at early time
points followed by an
activation of herbivore
defenses at later time points

Ray et al. 2016b

Leptinotarsa decemlineata
(Colorado potato beetle)

OS Endo-symbionts S. lycopersicum Induction of SA and
suppression of JA-induced
defenses (SA-JA
antagonism)

Chung et al. 2013

S. lycopersicum
S. melongena
S. dulcamara
S. caroliense
S. tuberosum
S. rostratum

Host plants shapes the
bacterial community present
in the OS and aids in
suppression of plant
defenses by utilizing SA-JA
crosstalk

Chung et al. 2017

Manduca sexta (tobacoo
hornworm)

OS FACs N. attenuata
N. acuminata
N. linearis
N. pauciflora

Elicited elevated levels of JA
and downstream of JA-
mediated defenses

Kahl et al. 2000;
Hermsmeier et al. 2001;
Halitschke et al. 2003;
Zavala et al. 2004;
Wu et al. 2007; Xu et al.
2015

OS FACs Zea mays Induced indirect defenses Alborn et al. 2003
OS ? S. lycopersicum Induction of several

anitnutritive defense
proteins

Chung and Felton 2011

Mythimna loreyi (loreyi
leafworm)

OS Non-FACs Oryza sativa Rapid induction of early and
late defense responses

Shinya et al. 2016

Mythimna separata (oriental
armyworm)

OS ? Z. mays Rapid reprogramming in
several host cell processes

Qi et al. 2016

(continued on next page)

a GOX = glucose oxidase; OS = oral secretions; SA = salicylic acid; JA = jasmonic acid; ET = ethylene; FACs = fatty acid–amino acid conjugates; VOCs =volatile
organic compounds; VEG = ventral eversible gland.
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herbivory by promoting plant susceptibility. b-Glucosidase has
also been identified in the OS of Pieris brassicae (Mattiacci
et al.1995). Further, application of b-glucosidase on cabbage
plants boosted the indirect plant defenses and is used by the pred-
ators of the attacking herbivores. Although the chemical nature of
OS from both specialist (P. brassicae) and generalist (Spodoptera
littoralis) insects that suppressed the plant defenses in Arabidopsis
are not known, the OS contain factors that likely altered host
physiology, thus leading to a better caterpillar growth (Consales
et al. 2012) (Table 1). These studies suggest that chewing in-
sects utilize a variety of HAMPs present in their OS to modu-
late the plant defense responses.
However, because lepidopteran caterpillars rarely regurgi-

tated while feeding on host plants (Peiffer and Felton 2009), the
regurgitant concentrations used in many of these studies should
be treated with caution. A highly sensitive fluorescence dye

method has been utilized to monitor and quantify the chewing
insect regurgitant on host plants (Chuang et al. 2014; Chung
et al. 2013; Louis et al. 2013b; Peiffer and Felton 2009). In-
terestingly, host plants can further influence the amount and
frequency of caterpillar regurgitation. It is likely that caterpil-
lars, depending on the host plant, secrete various concentrations
of regurgitant and may help modulate plant defense responses.
The caterpillars regurgitated more when they fed on the preferred
hosts compared with nonpreferred host plants (Peiffer and Felton
2009). Alternatively, caterpillars, while feeding on host plants,
might be regurgitating infrequently to minimize the exhibition of
HAMPs or effectors to avoid escalation of plant defenses.

Salivary secretions.
Lepidopteran caterpillars secrete saliva predominantly through

their labial and mandibular salivary glands (Felton et al. 2014).

Table 1. (continued from previous page)

Insect Source Component Host Response Reference

Ostrinia nubilalis (European
corn borer)

Saliva GOX Z. mays GOX induced both direct and
indirect defenses in tomato
whereas failed to induce
defenses in maize

Louis et al. 2013a and b

OS Auxin S. lycopersicum Promoted plant susceptibility
by enhancing nutritional
content

Dafoe et al. 2013

Frass ? Z. mays Activated JA-related defenses
while suppressing SA-
related defenses

Ray et al. 2016b

Spodoptera exigua (beet
armyworm)

OS GOX N. attenuata Elicited higher H2O2 and SA
accumulation and
suppressed JA- and ET-
dependent defenses

Diezel et al. 2009

OS FACs Z. mays Elicits VOCs Alborn et al. 1997
Saliva GOX Medicago

truncatula
Suppression of herbivore
defenses mediated through
ET pathway

Bede et al. 2006; Paudel
and Bede 2015

Saliva ? Arabidopsis
thaliana

Suppression of JA defenses by
an SA-independent
mechanism

Weech et al. 2008; Lan
et al. 2014

OS ? S. dulcamara Induced herbivore-related
defense genes

Lortzing et al. 2017

OS ? Gossypium
hirsutum

Induction of JA and gossypol Zebelo et al. 2017

VEG
secretions

? S. lycopersicum Induced transcript levels of
defense-related genes and
indirect defenses

Zebelo et al. 2014

Spodoptera frugiperda (fall
armyworm)

Saliva ? Z. mays Activated JA-related defenses Chuang et al. 2014
OS Endo-symbionts Z. mays Induced defenses in host

plants, enhanced caterpillar
growth on tomato whereas
curtailed their growth on
maize plants

Acevedo et al. 2017a
S. lycopsersicum

Frass Chitinases Z. mays Suppressed herbivore-
induced plant defenses

Ray et al. 2015, 2016a

Frass ? Oryza sativa Induced antiherbivore
defenses while suppression
of pathogen defenses

Ray et al. 2016b

Spodoptera littoralis
(Egyptian cotton leafworm)

OS Non-FACs N. miersii Induction of JA responses Xu et al. 2015
OS ? A. thaliana Suppressed wound-inducible

plant defenses by
suppressing ERF/AP2
transcription factor and
Protease Inhibitor (PI)
independent of JA and SA
pathways

Consales et al. 2012

VEG
secretions

? A. thaliana Induced early signaling
events

Zebelo and Maffei 2012

Spodoptera litura (oriental
leafworm)

Saliva ? N. tabacum Induction of nicotine
production

Zong and Wang 2004

OS FACs + additional
elicitors (?)

Glycine max Activation of isoflavanoid
biosynthesis

Nakata et al. 2016
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Although salivary cues have been identified in both labial and
mandibular gland secretions, the majority of insect elicitors or
effectors identified in the caterpillar saliva are originated from the
labial glands. For example, glucose oxidase (GOX) identified
in the saliva of Helicoverpa zea (corn earworm) predominantly
arises from labial salivary glands, albeit lower GOX activity also
was detected in the mandibular gland secretions (Eichenseer et al.
1999; Musser et al. 2002). Despite the presence of proteins
identified in the caterpillar mandibular-gland extracts, their effect
in altering host defenses are unknown (Eichenseer et al. 1999;
Roda et al. 2004). This is, in part, because mandibular secretions
may be mixed and released through OS and the other chemicals
or factors present in the OS might be hampering its display in
modulating plant defenses.
In addition to H. zea, several studies have reported GOX ac-

tivity in the labial gland secretions of other caterpillars (Chuang
et al. 2014; Eichenseer et al. 2010; Louis et al. 2013b) (Table 1).
The GOX present in the H. zea saliva suppressed defenses and
wound-induced accumulation of nicotine in Nicotiana tabacum
(tobacco) (Musser et al. 2002). Quite to the contrary, GOX
present in the saliva ofH. zea andOstrinia nubilalis induced the
defense responses in tomato (Solanum lycopersicum) (Louis
et al. 2013b; Tian et al. 2012). GOX is an enzyme that oxidizes
glucose to gluconic acid and hydrogen peroxide (H2O2), and
the resultant H2O2 is a well-known signaling molecule that is
involved in modulating plant defense responses to biotic stress
(Dietz et al. 2016). The labial-gland salivary secretions are re-
leased through a structure known as a spinneret, and several
studies have shown that cauterizing or ablating the spinneret
dramatically reduced the deposition of saliva onto the host plants,
thereby attenuating the impact of caterpillar saliva on modulating
plant defenses (Louis et al. 2013b; Musser et al. 2002). Cauter-
izing or ablating the spinneret using a heated probe prevents sali-
vation; however, caterpillars with ablated spinneret feed normally
on the host plants (Musser et al. 2002, 2006). Thus, this technique
has been extensively utilized to compare plant responses to cat-
erpillar feeding with and without saliva (Bede et al. 2006; Lan
et al. 2014; Louis et al. 2013b; Musser et al. 2002, 2006; Paudel
et al. 2013; Weech et al. 2008), determining the contribution of
one or more salivary effectors in modulating plant defenses.
ATP hydrolyzing enzymes, such as apyrase, ATPase, and

ATP synthase, have also been identified in the saliva of H. zea
(Wu et al. 2012). In addition to the suppression of chemical
defenses, ATPases suppressed the wound-induced expression
of physical defenses, such as trichomes, in tomato (Wu et al.
2012). These ATPases act as salivary effectors by hydrolyzing
extracellular ATP (eATP) and potentially acting as a secondary
messenger in a manner similar to H2O2, as mentioned above.
However, it is unknown how widespread is the presence of
ATPases in other caterpillars and whether ATPases present in
H. zea saliva can suppress defenses in other host plants. In fact,
an eATP receptor has been recently identified in Arabidopsis
(Choi et al. 2014). However, it is not yet known how these
salivary effectors are recognized by the host receptors. Further-
more, understanding the downstream signaling mechanisms that
contribute to the eATP-induced defense signaling will eventually
lead to the development of novel pest management strategies.
A recent salivary proteomic analysis of two strains of FAW

(“corn strain” and “rice strain”) fed on different host plants
identified several categories of proteins, including salivary pro-
teins, potentially involved inmodulating plant defenses (Acevedo
et al. 2017b). However, it still needs to be elucidated whether the
differences in salivary proteomes are due to the original differ-
ence in the FAW strains or due to differences in the diets. Indeed,
GOX and apyrases that were identified in the H. zea saliva and
involved in plant defense regulation (Tian et al. 2012) were also
detected in the salivary proteome of FAW. Several proteins were

differentially identified between the saliva of FAW strains, thus
indicating that host plants can further influence the plasticity of
salivary composition. Similarly, varied levels of GOX production
has been corroborated in many studies that involve caterpillar
feeding on different host plants with diverse levels of nutritional
quality (Afshar et al. 2010, 2013; Peiffer and Felton 2005; Yang
et al. 2017; Zong and Wang 2004). Carbohydrates and protein
concentrations in the diet act as positive regulators of GOX ac-
tivity in caterpillars (Babic et al. 2008). However, carbohydrates
and proteins or amino acids play a distinct role in GOX activity.
It was shown that carbohydrates affect GOX transcription,
while proteins present in the diet affect the translational or post-
translational regulation of GOX (Afshar et al. 2010). Another
study showed that the weak induction of defenses in maize
compared with tomato might be due to the lower amounts of
GOX substrate (glucose) (Louis et al. 2013b), suggesting that the
nutritional quality of host plants play a key role in defense
modulation by GOX. Further studies are required to elucidate the
role of novel HAMPs/effectors in caterpillar saliva and how they
are influenced by the nutritional quality of host plants.

VEG secretions.
Besides salivary gland secretions, VEGs also release elicitors

in modulating plant defenses. VEGs are located adjacent to the
mandibles of lepidopterans and are known sources of HAMPs.
Recent studies have indicated that secretions from VEGs in-
duce both direct and indirect defenses in host plants (Zebelo
and Maffei 2012; Zebelo et al. 2014). VEG secretions released
during Spodoptera littoralis feeding on Arabidopsis triggered
early signaling events, such as changes in Vm, and significantly
elevated both cytosolic calcium levels and H2O2 accumulation
(Zebelo and Maffei 2012). In contrast, VEG ablation of Spo-
doptera littoralis failed to induce the early signaling events,
thus suggesting that VEG secretions are perceived by plants and
are likely triggering the downstream signaling responses.
Similarly, Spodoptera exigua VEG secretions induced the ex-
pression of several genes that are involved in the biosynthesis of
JA and volatile organic compounds (Zebelo et al. 2014). Thus,
plants that have detected secretions from VEGs mobilized
both direct and indirect defense against attacking herbivore. Very
recently, Dussourd et al. (2016) demonstrated that tree-feeding
notodontid caterpillars, Oedemasia leptinoides, use their
mandibles to girdle the stem and to subsequently bathe the girdles
with fluid secretions. They further showed that the caterpillars
with blocked VEGs were still able to smear the girdles with
fluid, whereas caterpillars with cauterized or ablated spinneret
did not, suggesting that the fluid secretions originated from the
labial glands. GOX activity has been detected in the saliva of
Oedemasia leptinoides (Dussourd et al. 2016); however, the
exact role of saliva in modulating plant defenses is yet to be
determined. Similarly, another notodontid larvae, Theroa zethus,
that feeds on herbaceous members of the Euphorbiaceae, releases
not only saliva but also acid secretions from VEGs at the site of
feeding, presumably to suppress the plant defenses (Dussourd
2015). The question of whether VEG secretions alone or in blend
with saliva are required to modulate plant defenses remains to be
established.

EMERGING ROLE OF INSECT ENDOSYMBIONTS
AND FRASS IN REGULATING PLANT DEFENSES

Endosymbionts in chewing herbivore secretions.
In recent years, we have witnessed a great surge in un-

derstanding the role of insect endosymbionts in altering plant
defenses (Acevedo et al. 2017a; Chung et al. 2013, 2017; Wang
et al. 2016a, 2017). These insect-associated endosymbionts
benefit their hosts by creating physiological changes in the

16 / Molecular Plant-Microbe Interactions



plants or through modulating the complex plant defense sig-
naling pathways, or both. Barr et al. (2010) indicated that
Diabrotica virgifera virgifera (western corn rootworm [WCR])
treated with antibiotics, to eliminate endosymbionts, induced
more defense genes than untreated WCR. In contrast, a dif-
ferent study has disputed the role of WCR endosymbionts in
modulating maize defenses (Robert et al. 2013). Either geno-
type differences in maize, different biotypes of WCR, or both
might be accountable for the disparity between those two
studies. Nevertheless, some insects will harbor a different di-
verse array of microbes in their gut and release them through
their OS to the plant surface while they feed. Several species of
gram-negative bacteria were identified in the OS of Lep-
tinotarsa decemlineata (Colorado potato beetle [CPB]) (Chung
et al. 2013). These endosymbionts present in the CPB OS are
found to be involved in the activation of the SA pathway by
suppressing JA-mediated defenses. As mentioned before, the
SA-JA antagonism are well documented in different plant
systems and insects use these defense-signaling pathways to
trick the plants to acclimate for their own profit. Interestingly, a
recent study has demonstrated that symbiotic bacteria present
in the gut of CPB differentially suppressed plant defenses in
wild and cultivated Solanum host plants and the gut bacterial
communities in CPB varied drastically depending on the host
plants, suggesting that plants can also alter the herbivore-
associated bacterial community (Chung et al. 2017).
Similarly, several species of symbiotic bacteria have been

identified in the OS of FAW, and these herbivore-associated
bacteria have the ability to mediate insect-plant interactions
differently in multiple hosts (Acevedo et al. 2017a). The seven
different bacterial isolates belonging to the family Enter-
obacteriaceae from FAW OS have been shown to differen-
tially influence herbivore-induced defenses in tomato and
maize plants (Acevedo et al. 2017a). Interestingly, it was also
shown that gut-associated bacteria (Enterobacter ludwigii) in
H. zea are required for secreting more salivary effectors (GOX)
onto the insect feeding sites and for the induction of anti-
herbivore defense in tomato (Wang et al. 2017). However, it is
not known whether the same gut-associated bacteria can aid the
chewing insect to trigger the salivary effector while feeding on a
different host. Taken together, these studies suggest that insect
gut microbial communities are highly influenced by the host
plants.

Frass.
The role of effectors present in insect frass was ignored until

Ray et al. (2015) elegantly demonstrated that maize plants
could perceive signals arising from caterpillar frass. In maize,
caterpillar frass deposition at the site of insect feeding induced
the expression of pathogen defenses while suppressing herbi-
vore defenses. Thus, frass deposition induced SA accumulation
that could potentially be involved in suppressing JA levels (Ray
et al. 2015). Subsequently, it was shown that caterpillar frass
utilized plant-derived chitinases PR4 and endochitinase A to,
one or both, suppress plant defense and stimulate a susceptible
response to enhance the performance of herbivore on the host
plants (Ray et al. 2016a). However, identification of chitinases
as effectors in caterpillar frass represents only the tip of the
iceberg. For example, only one protein fraction among many of
the fractionated frass proteins that suppressed plant defenses
have thus been characterized (Ray et al. 2016a), suggesting that
novel effectors from insect frass are yet to be determined.
Furthermore, insect frass from various caterpillars modulated
plant defenses differentially in diverse plant tissues and species
(Ray et al. 2016b). It is plausible that insects utilize a particular
elicitor or blend of effectors present in the insect frass to acti-
vate or suppress distinct defense responses in specific host

plants. Moreover, the dynamics between insect frass and in-
direct plant defenses remains to be explored. It was reported
that the honeydew, a digestive waste, from aphids and white-
flies can modulate plant defense responses and contains several
endosymbionts (Sabri et al. 2013; Schwartzberg and Tumlinson
2014; VanDoorn et al. 2015). However, whether either the en-
dosymbionts, herbivore-associated bacterial communities, or
both are present in the chewing herbivore frass is currently
unknown and needs further investigation to understand if it
plays a potential role in regulating plant defenses.
In addition to insect endosymbionts and frass, oviposition by

moths and butterflies trigger both direct and indirect host plant
defenses and studies have shown that ovipositional fluids con-
tain elicitors (e.g., bruchins, benzyl cyanide) that can activate
defenses in host plants. Egg deposition on host plants induce
several defense mechanisms (both direct and indirect), thereby
preventing the eggs from hatching. Interestingly, H. zea moth
oviposition on tomato was perceived as an indication for future
herbivory by newly hatched larvae and activated specific de-
fenses targeting the larvae (Kim et al. 2012). Future studies are
required to elucidate what specific elicitors are present in the
ovipositional fluids that specifically induce defenses against
impending herbivory. For excellent reviews on HAMPs asso-
ciated with egg deposition and ovipositional fluids the reader
is referred to reviews by Reymond (2013) and Hilker and
Fatouros (2015, 2016).

PLANT DEFENSES TO INSECT HERBIVORE CUES

Host specificity of induced plant defenses
to herbivore feeding.
The FACs present in the OS of chewing herbivores can

modulate phytohormone composition and trigger volatile pro-
duction in several host plants (Schmelz et al. 2009). However, a
recent study of interactions between chewing herbivores and
rice has shown that FAC alone had minimal activity in eliciting
defenses in rice (Shinya et al. 2016). OS from the rice specialist
chewing herbivore Parnara guttata contained no measureable
FACs but still were able to induce early and late defense-
signaling responses. OS from Mythimna loreyi (generalist in-
sect) contained several typical FACs; however, even after the
removal of FAC from the OS, the FAC-free OS was still able to
activate defenses in rice (Shinya et al. 2016). This suggests that,
in rice, one or more non-FAC components may act as a critical
player in modulating defenses. Furthermore, it was shown that
combined actions of synthetic FAC and one or more high–
molecular mass elicitor fractions from insect OS largely con-
tributed to the activation of rice defenses. Thus, FAC amplifies
the action of insect OS, leading to the activation of induced
defenses in rice. Similarly, FACs present in the OS ofManduca
sexta elicited distinct defense responses in six different Nico-
tiana species (Xu et al. 2015). Furthermore, different Nicotiana
species exhibited extensive variation in defense responses when
these plants were individually treated with OS of M. sexta and
Spodoptera littoralis. Relative abundance of FACs present in
the OS of Spodoptera littoralis was considerably less as com-
pared with that in M. sexta (Hettenhausen et al. 2013). These
findings, albeit highly speculatively, suggest that some chewing
herbivores utilize FACs as a signal to amplify other herbivore-
associated elicitors to modulate plant defenses.
Similar to OS, one or more signals present in the caterpillar

saliva also display host specificity. For example, GOX present
in the saliva of caterpillars induced direct and indirect defenses
in tomato, whereas GOX failed to activate defenses in maize
(Louis et al. 2013a, 2013b; Tian et al. 2012), suggesting
specificity in the role of GOX in modulating plant defenses.
Further, GOX-mediated suppression of defenses in tobacco
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indicates that the nature of induction of defenses varies con-
siderably between plants belonging to the same family (e.g.,
tomato and tobacco) (Musser et al. 2002; Tian et al. 2012).
Interestingly, it was also shown that GOX synthesis and activity
is highly host-specific; polyphagous caterpillars that have a
wide host range exhibited elevated levels of GOX compared
with oligophagous caterpillar species with limited host range
(Eichenseer et al. 2010). Similarly, as mentioned before, in ad-
dition to the role of dietary carbohydrate and protein content, a
recent comparative study demonstrated that the greater GOX
activity in generalist herbivoreHelicoverpa armigerawas achieved
through posttranscriptional regulation of GOX gene, as compared
with the specialist herbivore Helicoverpa assulta (Yang et al.
2017). Specifically, the authors detected a significant correlation of
higher GOX activity in generalist insects due to either greater
translation efficiency, stability of GOX mRNA, or both in com-
parison with specialist insects (Yang et al. 2017). Based on the
current understanding, it is tempting to speculate that the plant-
herbivore evolutionary trajectory has enabled the generalist insects
to produce more salivary effectors to modulate host-specific plant
defenses.
Similarly to herbivore feeding, as mentioned before, insect

frass-induced plant defenses are explicit to the composition of
frass and the plant tissue (e.g., leaves, fruits) on which the frass
was deposited (Ray et al. 2015, 2016a and b). Table 1 sum-
marizes the effect of host specificity of induced plant defenses
to herbivore feeding.

Sequence specificity of induction of plant defenses
to herbivore feeding.
Recent studies have compared the sequence-specific effects

of insect feeding on systemic defenses. For example, FAW
feeding on maize leaves strongly repelled subsequent below-
ground feeding by WCR (Huang et al. 2017). Recently, it was
shown that initial feeding by FAWalters the root phenylpropanoid
patterns, thereby leading to enhanced resistance to subsequent
feeding by WCR (Erb et al. 2015). Interestingly, not the
wounding alone but adding FAW OS to wounds triggered an
avoidance response in WCR, suggesting that actual signals
that induce changes in root chemistry originated from the OS
of FAW. In addition, initial feeding by FAW on maize leaves
caused changes in root volatiles, which also contributed to the
avoidance response in WCR (Huang et al. 2017). FAW feed-
ing on maize leaves also suppressed the root emission of the
phytohormone ET, which was used by WCR to locate the

suitable host plant. However, early colonization of WCR on
maize roots suppressed subsequent FAW-induced root vola-
tiles and rendered roots insensitive to above-ground feeding
by FAW (Huang et al. 2017). Analysis of root volatiles that
were initially infested with WCR indicated that maize roots
produced elevated levels of (E)-b-caryophyllene and ET, two
critical host-finding cues for WCR larvae (Robert et al. 2012).
Understanding the signals arising from secretions of WCR
that suppresses FAW-induced root volatiles still needs further
elucidation. However, initial colonization by WCR on maize
roots did not affect subsequent FAW larval performance on
the maize shoots (Erb et al. 2011), suggesting that FAW can
overcome defenses activated by WCR. As mentioned before,
recent proteomic analysis of FAW saliva fed on different hosts
has identified several effector proteins that can potentially
modulate host defenses (Acevedo et al. 2017b). It is highly
plausible that the recent elucidation of FAW-derived effectors
and elicitors will lead to the identification of one or more
novel FAW salivary components that facilitate sequence spec-
ificity of induction of host defenses. These studies suggest that
one or both insect OS and saliva are likely recognized by
plants and act as an important modulator in inducing or sup-
pressing sequence specificity of induction of plant defense
responses.

CONCLUSIONS AND FUTURE DIRECTIONS

The current understanding of the roles of HAMPs and ef-
fectors from chewing herbivores and its interaction with their
hosts is depicted in Figure 1. Although the number of insect
HAMPs and effectors known are considerably fewer compared
with pathogen and microbe effectors, it is evident that identi-
fication and characterization of additional elicitors or effectors
will help to design plants that can better withstand herbivore
attack. Similarly to other microbes (Hewezi 2015; Lo Presti
et al. 2015; Macho and Zipfel 2015), insect herbivores possibly
produce a blend of herbivore-associated cues and we have just
begun to identify more elicitors and effectors (e.g., insect frass
and herbivore-associated endosymbionts) in modulating plant
defenses. Given the diverse nature of insect herbivores, it is
highly plausible that novel effectors and herbivore-associated
endosymbionts are yet to be discovered. It would also be in-
teresting to explore how these herbivore-associated cues are
conserved across insect herbivores and how they are influenced
by the host diet.

Fig. 1. Overview of plant defense responses to herbivore-associated molecular patterns (HAMPs) and effectors from chewing herbivores and their interaction
with plants, insects, and predators. HIPVs = herbivore-induced plant volatiles, VOCs = volatile organic compounds, and OS = oral secretions.
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One of the most challenging questions in the study of insect
HAMPs and effectors is to identify how these signals are being
recognized by the host plants. Although a putative volicitin re-
ceptor in maize has been identified (Truitt et al. 2004), very little is
known about HAMP receptors. This area is, in fact, relatively
unexplored and future studies are required to understand the
molecular and biochemical recognition of HAMPs and effectors
and downstream signaling events. Concurrently, it is also very
exciting that the recent advancements in “omics” technology will
allow us to explore several under-studied areas in the field of
plant-insect interactions. For instance, proteomics has been suc-
cessfully used in identifying insect elicitors and effectors from
various chewing herbivores (Acevedo et al. 2017b; Ray et al.
2016a; Tian et al. 2012). Additionally, genome-editing tools such
as CRISPR-Cas9 can, potentially, be used to understand the
function of insect HAMPs and effectors in modulating de-
fenses. This approach has been elegantly used inH. armigera to
disrupt the cadherin gene (HaCad), which was previously
identified as a receptor of Bacillus thuringiensis Cry1A toxins
(Wang et al. 2016b). Similarly, RNA interference–mediated
gene knockdown has shown prominent results against differ-
ent chewing insects (Baum et al. 2007; Bolognesi et al. 2012;
Hu et al. 2016; Mao et al. 2007; Zhu et al. 2011). Transgenic
plants that expresses double-stranded (ds)RNA or plants
sprayed with dsRNA that target insect effectors could, po-
tentially, be deployed to control insect pests. These novel
approaches will help to identify additional insect HAMPs and
effectors and to unravel the mechanisms of insect HAMP
perception by plants and revolutionize the understanding of
complex interactions between plants and insect herbivores.
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