19 research outputs found

    Why recombinant antibodies — benefits and applications

    No full text

    End-Binding E3 Ubiquitin Ligases Enable Protease Signaling

    No full text
    Post-translational modifications (PTMs) direct the assembly of protein complexes. In this context, proteolysis is a unique PTM because it is irreversible; the hydrolysis of the peptide backbone generates separate fragments bearing a new N and C terminus. Proteolysis can "re-wire" protein-protein interactions (PPIs) via the recruitment of end-binding proteins to new termini. In this review, we focus on the role of proteolysis in specifically creating complexes by recruiting E3 ubiquitin ligases to new N and C termini. These complexes potentiate proteolytic signaling by "erasing" proteolytic modifications. This activity tunes the duration and magnitude of protease signaling events. Recent work has shown that the stepwise process of proteolysis, end-binding by E3 ubiquitin ligases, and fragment turnover is associated with both the nascent N terminus (i.e., N-degron pathways) and the nascent C terminus (i.e., the C-degron pathways). Here, we discuss how these pathways might harmonize protease signaling with protein homeostasis (i.e., proteostasis)

    Flies expand the repertoire of protein structures that bind ice

    No full text

    DNA repair is indispensable for survival after acute inflammation

    Get PDF
    More than 15% of cancer deaths worldwide are associated with underlying infections or inflammatory conditions, therefore understanding how inflammation contributes to cancer etiology is important for both cancer prevention and treatment. Inflamed tissues are known to harbor elevated etheno-base (ε-base) DNA lesions induced by the lipid peroxidation that is stimulated by reactive oxygen and nitrogen species (RONS) released from activated neutrophils and macrophages. Inflammation contributes to carcinogenesis in part via RONS-induced cytotoxic and mutagenic DNA lesions, including ε-base lesions. The mouse alkyl adenine DNA glycosylase (AAG, also known as MPG) recognizes such base lesions, thus protecting against inflammation-associated colon cancer. Two other DNA repair enzymes are known to repair ε-base lesions, namely ALKBH2 and ALKBH3; thus, we sought to determine whether these DNA dioxygenase enzymes could protect against chronic inflammation-mediated colon carcinogenesis. Using established chemically induced colitis and colon cancer models in mice, we show here that ALKBH2 and ALKBH3 provide cancer protection similar to that of the DNA glycosylase AAG. Moreover, Alkbh2 and Alkbh3 each display apparent epistasis with Aag. Surprisingly, deficiency in all 3 DNA repair enzymes confers a massively synergistic phenotype, such that animals lacking all 3 DNA repair enzymes cannot survive even a single bout of chemically induced colitis
    corecore