8,204 research outputs found

    Noncommutative Black Holes and the Singularity Problem

    Full text link
    A phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model is considered to study the interior of a Schwarzschild black hole. Due to the divergence of the probability of finding the black hole at the singularity from a canonical noncommutativity, one considers a non-canonical noncommutativity. It is shown that this more involved type of noncommutativity removes the problem of the singularity in a Schwarzschild black hole.Comment: Based on a talk by CB at ERE2010, Granada, Spain, 6th-10th September 201

    Vacuum decay in an interacting multiverse

    Get PDF
    We examine a new multiverse scenario in which the component universes interact. We focus our attention to the process of "true" vacuum nucleation in the false vacuum within one single element of the multiverse. It is shown that the interactions lead to a collective behaviour that might lead, under specific conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave background radiation.Comment: 9 pages, 5 figure

    Discrete-Time Fractional Variational Problems

    Full text link
    We introduce a discrete-time fractional calculus of variations on the time scale hZh\mathbb{Z}, h>0h > 0. First and second order necessary optimality conditions are established. Examples illustrating the use of the new Euler-Lagrange and Legendre type conditions are given. They show that solutions to the considered fractional problems become the classical discrete-time solutions when the fractional order of the discrete-derivatives are integer values, and that they converge to the fractional continuous-time solutions when hh tends to zero. Our Legendre type condition is useful to eliminate false candidates identified via the Euler-Lagrange fractional equation.Comment: Submitted 24/Nov/2009; Revised 16/Mar/2010; Accepted 3/May/2010; for publication in Signal Processing

    Entropic Gravity, Phase-Space Noncommutativity and the Equivalence Principle

    Full text link
    We generalize E. Verlinde's entropic gravity reasoning to a phase-space noncommutativity set-up. This allow us to impose a bound on the product of the noncommutative parameters based on the Equivalence Principle. The key feature of our analysis is an effective Planck's constant that naturally arises when accounting for the noncommutative features of the phase-space.Comment: 12 pages. Version to appear at the Classical and Quantum Gravit
    corecore