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We examine a new multiverse scenario in which the component universes interact. We focus our 
attention to the process of “true” vacuum nucleation in the false vacuum within one single element of the 
multiverse. It is shown that the interactions lead to a collective behavior that might lead, under specific 
conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave 
background radiation.
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1. Introduction

The idea that our universe is an element in a vast set of uni-
verses, the multiverse, has been argued to be an interesting way 
to address the cosmological constant problem in the context of 
string theory [1–3]. Of course, this scenario raises many questions. 
How is the vacuum of our world chosen? Through anthropic ar-
guments [4]? Through quantum cosmology arguments [5]? Is the 
string landscape scenario compatible with predictability [6]? Do 
the universes of the multiverse interact [7] (see also Ref. [8])? Does 
the multiverse exhibit collective behavior [9]? The multiverse also 
arises in the context of the so-called Many World Interpretation 
of quantum mechanics [10] and in the eternal inflationary model 
[11].

Actually, it has been recently proposed that the multiverse of 
eternal inflation and the many-worlds interpretation of quantum 
mechanics can be identified, yielding a new view on the mea-
sure and measurement problems [12,13]. However, it has been 
argued that a non-linear evolution of observables in the quantum 
multiverse would be an obstacle for such a description as these 
non-linearities are expected from quite general arguments [14].

In this paper we shall study the process of vacuum decay in 
the context of an interacting multiverse [7,9]. The consideration 
of an interacting multiverse entails a new and richer structure 
for the whole set of universes. The aim of this paper is to ana-
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lyze the influence of this enriched structure in the process of the 
vacuum decay of a single universe. First, we shall consider the 
Wheeler–De Witt equation for the wave function of the space–
time. For many cases of interest the space–time is described by 
a homogeneous and isotropic geometry whose spatial section vol-
umes scale as a3(t), where the scale factor a(t) is a function of 
the cosmic time t of a given multiverse. In this case the wave 
function of the universe, φ, simplifies and it only depends on the 
values of the scale factor and the matter fields, i.e. φ = φ(a, �ϕ), 
with �ϕ ≡ (ϕ1(t), ϕ2(t), . . .) being a set of scalar fields. These can 
thus be considered as a field that propagates in the space spanned 
by the variables {a, �ϕ}.

Following the usual prescriptions of quantum mechanics, a sec-
ond quantization procedure can be applied to the field φ(a, �ϕ), 
which can be described in terms of quantum oscillators with their 
corresponding creation and annihilation operators. These operators 
would represent, in an appropriate representation, the creation 
and annihilation of pieces of the space–time with a given geome-
try. This description allows for representing the fluctuations of the 
space–time in terms of baby universes [15], i.e. small particle-like 
portions of space–time that pop up and branch off from the parent 
space–time and propagate therein. Similarly, for a super-observer 
the field φ(a, �ϕ) can be described in terms of particle-like pieces 
of space–time that we call universes.

The aim of this work is to examine if a supra-universal struc-
ture can influence the properties of a single causally isolated re-
gion of the space–time.

Whatever the definition of a universe is, it can be associate to 
some notion of causal closure, i.e. a region of the space–time man-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ifold where all causally related events are self-contained. In other 
words, something that may cause or may be caused by any effect 
on any observed part of the universe should be included as being 
part of the universe. Thus, although it seems meaningless to con-
sider external elements of the universe, we shall see that this is 
not the case.

The classical and local notion of causal closure does not exclude 
the possibility that non-local interactions among different regions 
of the space–time may determine some of the global properties 
of single universes. In fact, it has already been shown [9] that the 
interaction between two or more universes could determine the 
effective values of the cosmological constant of the universes. De-
spite that, light ray cones and local causal relations and properties 
within each single universe still obey the usual relations and re-
main causal. However, the value of a global property like its the 
cosmological constant can be affected by the interaction among 
the universes.

This cosmological picture is then completely different than the 
one single universe picture. Interactions and collective behavior
might then occur among the universes of the multiverse. Actually, 
this collective behavior is fairly general and is at the very heart 
of quantum theory, which is a non-local theory and within which 
all the physical elements are fundamentally coupled to their en-
vironment and individual properties arise out of a result of some 
decoherence process. Thus, the true quantum state of the space–
time must account for the states of all the universes, if they exist. 
The aim of this paper is to examine whether some of these collec-
tive processes may have an observable influence on the properties 
of our universe.

Irrespective of the consideration of a multiverse and its impli-
cations, it seems therefore interesting to analyze the influence, if 
any, that different distant regions of the space–time may have on 
the properties of the observable part of our local universe (see 
also Ref. [16]) with a two-fold aim: i) to analyze whether they 
might help to solve some of the open questions posed by the lat-
est Planck data [17,18], and ii) to look for distinguishable imprints 
of other universes in, for instance, the properties of the cosmic mi-
crowave background (CMB) spectrum [19].

This paper is organized as follows: In section 2, we discuss 
the Hamiltonian quantum cosmology model of an interacting mul-
tiverse. In section 3, we consider the bubble formation, that is, 
the nucleation of universes in a parent space–time and specifically 
address this nucleation in a setting where the universes are inter-
acting. Finally, in section 4, we present a discussion of our results.

2. The interacting multiverse

Let us consider a simply connected piece of a homogeneous and 
isotropic space–time manifold endowed with a scalar field ϕ that 
represents the matter content. More general topologies can also be 
considered by splitting the whole manifold into simply connected 
pieces of space–time [20], each of which is quantum mechanically 
described by a wave function φ = φ(a, ϕ) that is the solution of 
the Wheeler–De Witt equation [9]

φ̈ + 1

a
φ̇ − 1

a2
φ′′ + ω2(a,ϕ)φ = 0, (1)

where the scalar field has been rescaled according to Ref. [21], 
ϕ → 2

M P

√
π
3 ϕ , where M P is the Planck mass. In Eq. (1) the dots 

represent derivatives with respect to the scale factor and the prime 
denotes derivative with respect to the scalar field. The function 
ω(a, ϕ) contains the potential terms of the Wheeler–De Witt equa-
tion. In the case of a closed space–time it is given by

ω2(a,ϕ) ≡ σ 2(H2a4 − a2), (2)
where σ ≡ 3π M2
P

2 and H ≡ H(ϕ) is the Hubble function. The fre-
quency ω has units of mass or, equivalently, units of the inverse of 
time or length. We shall consider two contributions to the Hubble 
function, i.e., H2 = H2

0 + H2
1. The first one is due to the existence of 

a cosmological constant, H2
0 = �0

3M2
P

, which is assumed to be very 
small. The second contribution is due to the potential of the scalar 
field, H2

1 = 8π
3M2

P
V (ϕ).

Let us now develop a quantum field theory for the wave func-
tion φ in the curved minisuperspace spanned by (a, ϕ) with a 
minisuperspace metric given by

G MN =
( −a 0

0 a3

)
, (3)

where M , N stands for {a, ϕ}. The line element of the minisuper-
space metric is therefore

ds2 = −ada2 + a3dϕ2. (4)

The scale factor, a, formally plays the role of the time variable and 
the matter field the role of the spatial variable in the two dimen-
sional Lorentzian minisuperspace metric (3) (a(t) can actually be 
seen as a time reparametrization). We can now follow the usual 
procedure of a quantum field theory for the scalar field1 φ(a, ϕ)

by considering the following action

S =
∫

dadϕ L(φ, φ̇, φ′), (5)

where the Lagrangian density is given, as usual, by

L = 1

2

√−G
{

G MN∂Mφ∂Nφ − V(φ)
}

(6)

= 1

2

(
−aφ̇2 + 1

a
φ′ 2

)
+ a ω2

2
φ2, (7)

where G = det(G MN ). Then, the corresponding Euler–Lagrange 
equation [22]

1√−G
∂M

(√−GG MN∂N

)
φ + 1

2

δV
δφ

= 0, (8)

turns out to be the Wheeler–De Witt equation, Eq. (1).
The Hamiltonian density that corresponds to the Lagrangian 

density, Eq. (6), is given by

H = −1

2

(
1

a
P 2

φ + 1

a
φ′ 2 + aω2φ2

)
, (9)

where

Pφ ≡ δL
δφ̇

= −aφ̇ , (10)

is the momentum conjugated to the field φ.
We can now pose an interaction scheme [7,9] among a set of N

universes by considering a total Hamiltonian density given by [9]

H =
N∑

n=1

H(0)
n +H(i)

n , (11)

where H(0)
n is the unperturbed Hamiltonian density of the n-

universe, given by Eq. (9), and H(i)
n is the Hamiltonian density of 

the interaction for the n-universe, that here we consider as the 
simple quadratic interaction between next neighbor universes,

1 Spinorial and vector fields could also been considered.
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H(i)
n = aλ2(a)

8
(φn+1 − φn)

2, (12)

where λ(a) is a coupling function that can depend on the value of 
the scale factor and we use periodic boundary conditions so that, 
φN+1 ≡ φ1.

We consider that the Hamiltonian density, Eq. (11), represents 
the evolution of a set of universes that are interacting to each 
other, where each internal observer do not see any interaction but 
only its own Hamiltonian density. We can take into account, for 
the sake of simplicity, a new representation given in terms of the 
normal modes by means of the Fourier transformation of φ and 
Pφ

φ̃k = 1√
N

N∑
n=1

e−(2π ikn/N)φn, (13)

P̃k = 1√
N

N∑
n=1

e(2π ikn/N) Pn, (14)

the Hamiltonian density, Eq. (11), becomes

H = −1

2

N∑
k=1

(
1

a
P̃ 2

k + 1

a
φ̃′ 2

k + aω2
k φ̃2

k

)
. (15)

The new quantum states oscillate now with a frequency given by

ω2
k (a,ϕ) = ω2(a,ϕ) + λ2(a) sin2

(
πk

N

)
. (16)

This is formally the typical quantum description of a collective 
system in terms of normal modes. These represent a collective be-
havior in which the wave function can oscillate. For a single mode 
k the oscillation of the wave function φ̃k is given by the equation

¨̃
φk + 1

a
˙̃
φk − 1

a2
φ̃′′

k + ω2
k (a,ϕ)φ̃k = 0, (17)

which is the effective Wheeler–De Witt equation of the wave func-
tion of the k-universe in the φ̃ representation that appears as an 
isolated, non-interacting universe. We shall assume that, although 
we work in this single multiverse wave function formalism, all the 
results can be decomposed in terms of the previous formalism of 
individual universes.

The effective value of the potential term of the scalar field in 
the k-universe has been modified as a result of the interaction with 
other universes. Let us notice that Eq. (16) can be written as

ω2
k (a,ϕ) = σ 2(H̃2

1,ka4 + H2
0a4 − a2), (18)

where H0 = 3�0 and H̃2
1,k = 8π

3M2
P

Ṽk(ϕ, a), with

Ṽk(ϕ,a) = V (ϕ) + λ2(a)

4π2a4
sin2

(
πk

N

)
. (19)

Let us now analyse the influence of the last term in Eq. (19) in 
the terms of the k-universe. We restrict our interest to the regime 
where the wave function of the k-universe can be approximately 
described by the semiclassical wave function

φk ≈ e± i
h̄ S0(a)�k(a,ϕ), (20)

where S0 is the action of the gravitational part alone with no in-
teraction, that is:

S0(a) = σ

∫
da a

√
H2

0a2 − 1 = σ

3H2
(H2

0a2 − 1)
3
2 , (21)
0

where the positive and negative signs in Eq. (20) correspond to the 
contracting and the expanding branches of φk , respectively. The 
wave function �k(a, ϕ) satisfies then, at first order in h̄, the fol-
lowing wave equation [23]

−ih̄
∂

∂t
�k = 1

2

(
1

a

∂2

∂ϕ2
+ aṼk(ϕ,a)

)
�k. (22)

We point out that the term proportional to H1,k is precisely (or 
related to) the term with Vk in Eq. (22). Let us notice that in 
the absence of any interaction scheme Eq. (22) is the Schrödinger 
equation for the scalar field ϕ with a Hamiltonian given by

h = 1

2
p2
ϕ + V (ϕ). (23)

The field equation for the scalar field is given by

ϕ̈ + 3
ȧ

a
ϕ̇ + dṼk

dϕ
= ϕ̈ + 3

ȧ

a
ϕ̇ + dV

dϕ
= 0, (24)

where the dots stands for derivative with respect to the Friedmann 
time t , i.e. ϕ̇ ≡ dϕ

dt . The last term in the potential Ṽk , given by 
Eq. (19), has no influence upon Eq. (24), so the classical behavior
of the scalar field remains unaltered with respect the usual de-
scription. Quantum mechanically, however, the extra term in the 
potential introduces a modification in the vacuum state that has to 
be accounted for any vacuum decay process of the universe. This 
has a major influence in the process of bubble formation and in 
the global structure of the space–time.

3. Bubble formation

The quantum interactions among distant regions of the whole 
space–time manifold can modify the vacuum state of the mat-
ter fields. We have seen that for a chain of interacting universes, 
where the potential of the scalar field for a normal mode of the 
wave function of the universe depends on the value r of the mode. 
Different universes may remain in different mode states and ob-
servers therein feel their universes to be filled with a scalar field 
whose vacuum state is different for each mode state. The universes 
may then suffer a process of vacuum decay between two different 
values of their vacua. The key point for the vacuum decay is the 
existence of different local minima in the potential of the mat-
ter fields. The minimum of those local minima is called the true 
vacuum and the remaining are the false vacua. In the late 1970s 
Coleman has generalized the quantum mechanical tunneling effect 
of transition from the “false” vacuum (excited state) into the “true” 
vacuum (ground state) in field theory [24]. Subsequently, quantum 
radiative corrections were introduced [25] and finally the effect of 
gravity was considered [26]. The issue of adopting a set of consis-
tent boundary conditions for the decay process was examined in 
Ref. [27]. In the framework developed by Coleman and collabora-
tors, a field in a false vacuum state can then decay to the state 
of true vacuum with a probability of occurrence per unit time per 
unit volume, �/V , given in the semiclassical approximation by

�/V = Ae−B/h̄, (25)

where A and B are two quantities to be determined. The result 
is the materialization of a bubble of true vacuum separated by a 
thin wall from the surrounding false vacuum. The global picture is 
then a vast space–time in the false vacuum splattered by bubbles 
of true vacuum that are continuously forming and expanding until 
they finally collide, merge and fill the whole space–time.

Let us now consider the process of vacuum decay in the context 
of a theory [26] with a potential V (ϕ) that has two minima, ϕ+
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Fig. 1. Potential in Ref. [26].

Fig. 2. a) Global picture of the potential (C–DL like potential); b) Quartic potential. 
Vacuum decay can now occur between two different minima of the same mode 
(C-DL) or between the minima of two different modes (interacting multiverse).

and ϕ− , with values of their vacuum energy given by �+ ≡ V (ϕ+)

and �− ≡ V (ϕ−), respectively (see Fig. 1). The thin wall approxi-
mation, that is going to be applied, it is satisfied when

�+ − �− = ε ,
ε

�±
	 1. (26)

Hence, a region of the space–time in the false vacuum may de-
cay into the true vacuum by nucleating a bubble of true vacuum 
within the surrounding false vacuum that rapidly grows and ex-
pands when it is energetically favorable.

Let us now analyse the same process in the context of the in-
teracting multiverse described in Sect. 2. For a given value of the 
scale factor, the extra term of the potential of the k-universe is 
a constant that depends on the value k of the normal mode of a 
given universe. The global effective value of the potential is then 
given by a set of curves separated by k units (see Fig. 2), with 
k = 0, . . . , N/2. The global picture presents then a landscape struc-
ture with N different vacua: N − 1 false vacua states and a true 
vacuum state V (ϕ+, k = 0). We can consider, on one hand, the 
vacuum decay in a universe as a consequence of the multiverse 
interaction. On the other hand, we can also consider a global pic-
ture of vacuum in the multiverse and study the vacuum decay into 
a real vacuum that corresponds to a single universe.

The vacuum decay process follows the description of Ref. [26]. 
However, the process of bubble formation and the global struc-
ture of a single universe is now much richer. It can be envisaged 
as follows: small baby universes are created from quantum fluctu-
ations of the space–time. At small values of the scale factor (i.e. 
values close to the Planck scale) the fluctuations of the scalar field 
and the effects of the interaction among the universes are domi-
nant, so the newborn universes are expected to remain in normal 
modes with a high value of k. In some universes, the effective 
value of the potential would be high enough to trigger inflation 
even if we assume the new limit that is suggested by the most re-
cent Planck data [18] (see Fig. 3). As the universe expands in the 
k-false vacuum, different processes of vacuum decay are expected 
to occur generating new bubbles of smaller and smaller false vacua 
until the bubbles are created in the true vacuum �+,k=0. How-
ever, the process does not stop there. The quantum fluctuations of 
the space–time of large regions with false or true vacuum state 
would supply new baby universes where the process of vacuum 
Fig. 3. Plateau-like potentials in the interacting multiverse. Even though the classical 
energy density of the plateau can be very small for a particular mode, i.e. Vk(0) −
Vk(ϕ±) 	 M4

P , which is suggested by the most recent Planck data [18], the energy 
supplied by the quantum vacuum state could be large enough to trigger inflation 
in universes with a high mode state, i.e. Vk(ϕ±) − Vk=0(ϕ±) ∼ M4

P , for high values 
of k. A process of vacuum decay could then occur afterwards.

decay and bubble formation would take place continuously in a 
self-contained eternal process.

3.1. Quartic potential

For the sake of concreteness, let us consider the scalar field 
with a quartic potential

V (ϕ) = m4

4λ2
ϕ

− 1

2
m2ϕ2 + λ2

ϕ

4
ϕ4, (27)

where m is the mass and λϕ is the self-coupling of the scalar field. 
It has two minima located at ϕ± = ± m

λϕ
, both with the same value 

of the potential given by V (ϕ±) = 0. Let us notice that in the case 
studied by Coleman and De Luccia the value of the potential at the 
two different minima differs by a small amount of energy ε, oth-
erwise the process of vacuum decay would not be possible. In the 
case under consideration, this condition is not necessary because 
the process of vacuum decay will take place between the vacuum 
states of different modes that could correspond to different uni-
verses or to a single universe whose vacuums had been modified 
by the interaction with other universes. This is schematically rep-
resented in Fig. 2b. Thus, instead of having Eq. (26) defining the 
thin wall approximation, here we have

Ṽk(ϕ+) − Ṽk−1(ϕ+) = εk . (28)

That is

εk = λ2(a)

4π2a4

[
sin2

(
πk

N

)
− sin2

(
π(k − 1)

N

)]
. (29)

The probability for a vacuum decay from the mode k to the mode 
k − 1 is given by [26]

B = 2π2ρ̄3 S1 − 1

2
π2ρ̄4εk , (30)

where ρ̄ = 3S1/εk and S1 = 2 
∫

dρ[Ṽ 0(ϕ) − Ṽ 0(ϕ+)]. Ṽ 0(ϕ) is a 
function chosen such that Ṽ 0(ϕ+) = Ṽ 0(ϕ−) and that

dṼ 0

dϕ
(ϕ±) = 0 . (31)

Thus, Ṽ 0(ϕ) = V (ϕ) given in Eq. (27). We choose ρ̄ as the point at 
which ϕ is the average of its two extreme values,

φ1/2 = 1

2

(
Ṽ (ϕ+,k) + Ṽ (ϕ+,k − 1)

)

= λ2(a)

2 4

[
sin2

(
πk

)
+ sin2

(
π(k − 1)

)]
. (32)
4π a N N
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Furthermore, ρ̄ is assumed to be large compared to the length 
scale on which ϕ varies significantly. Then, it is possible to write 
ϕ in terms of ρ [26]:

ρ − ρ̄ =
φ∫

φ1/2

dϕ[2(Ṽ 0(ϕ) − Ṽ 0(ϕ±))2]−1/2 ⇔

⇔ φ(ρ) = m

λϕ
+ tanh

[
m

2
√

2
(ρ − ρ̄) + tanh−1 λϕ

m
φ1/2

]
. (33)

Hence, following Ref. [26] we now can evaluate S1 in the thin wall 
approximation,

S1 = 2

+∞∫
−∞

dρ[Ṽ 0(ϕ) − Ṽ 0(ϕ+)] = 2
√

2

3

m3

λ2
ϕ

, (34)

and consequently the probability factor B for a vacuum decay from 
the mode k to the mode k − 1 is

B = 10

3
π2 m12

λ8
ϕ

(
4π2a4

λ2(a)

)3
1[

sin2
(

πk
N

)
− sin2

(
π(k−1)

N

)]3
. (35)

It is worth noticing that Eq. (35) restricts the values of coupling 
function λ(a) that suppress the vacuum decay at large values of 
the scale factor. For instance, with a polynomial value λ(a) ∝ an , n
must satisfy n ≤ 2 in order to fulfill the condition that the vacuum 
decay cannot grow with the scale factor. We can thus analyze some 
plausible cases.

The cases considered, i.e. λ ∝ a2, a, constant, and a−1, be-
sides being the first four polynomial terms fulfilling the condition 
n ≤ 2 of Eq. (35) (see the last paragraph), are motivated as the 
first three of them effectively correspond to the following energy–
matter content of the universes: cosmological constant, geometri-
cal term (closed case), electromagnetic or radiation content. On the 
other hand, the last one (a−1) is motivated because it appears in 
the mode decomposition of the wave function of the universe (see 
Ref. [21]), and it is the one that would leave interesting imprints 
on the CMB.

3.1.1. Case 1: λ(a) ∝ a2

Let us first consider the value

λ2(a) = 9π M2
P

2
�a4, (36)

where the constants has been chosen for later convenience. Then, 
Eq. (18) can be re-written as

ω2
k (a,ϕ) = σ 2(H2

0,ka4 − a2) + σ 2 H2
1a4, (37)

where H1 = 8π
3M2

P
V (ϕ), and

H2
0,k = 3�eff

k , (38)

with

�eff
k = �0 + � sin2 πk

N
. (39)

Thus, Eq. (17) would represent the quantum state of a universe 
with an effective value of the cosmological constant of the back-
ground space–time given by Eq. (39). For a positive value of �, 
�eff

k ∈ [�0, �0 + �]. If we assume a small value of �0 (included 
the value �0 = 0) and a value � ∼ M4

P , then, at the onset of the 
universe where it is supposed to remain at a large value for the 
r mode, the effective value of the cosmological constant would 
be large enough to trigger inflation. Afterwards, as the universe 
decays into lower modes, the effective value of the cosmological 
constant would be getting smaller and smaller until it would reach 
the value �0 that would be the currently observed value of the 
cosmological constant.

Another way to obtain a small effective value of the cosmolog-
ical constant is to suppose a negative value for �. Then, �eff

k ∈
[0, �0] provided that � is of the same order of �0. However, it 
implies a strong fine tuning and it would mean that our universe 
is now in a state with a high value r of the mode. This does not 
seems to be consistent.

3.1.2. Case 2: λ(a) ∝ a
Let us now consider the coupling function

λ2(a) = −3π M2
P

2
α2a2 , (40)

where α is a constant parameter. Now

ω2
k (a,ϕ) = σ 2(H2

0a4 − α2
k a2) + σ 2 H2

1a4, (41)

with

α2
k = 1 + α2 sin2 πk

N
. (42)

Because the factor α2
k in Eq. (41), Eq. (17) with Eq. (41) would not 

actually represent the quantum state of a closed universe. How-
ever, we can perform a scale factor transformation

ãk = √
αka, (43)

in terms of which Eq. (17) turns out to be

¨̃
φk + 1

ãk

˙̃
φk − 1

ã2
k

φ̃′′
k + ω2

k (ãk,ϕ)φ̃k = 0, (44)

where now the dots stand for the derivative with respect to the 
transformed scale factor ãk , and

ω2
k (ãk,ϕ) = σ 2(H̃2

0,kã4
k − ã2

k ) + σ 2 H̃2
1ã4

k , (45)

with

H̃2
0,k = H2

0

α2
k

= 3
�0

(1 + α2 sin2 πk
N )2

= 3�eff
k . (46)

Eq. (17) with Eq. (45) does actually represent the quantum state 
of a closed universe with an effective value of the cosmological 
constant given by �eff

k .
For a value −1 < α2 < 0, the effective value of the cosmological 

constant satisfies, �eff
k ∈ [�0, �0

(1−|α2|)2 ] → [�0, ∞], for |α2| → 1. It 
would imply that for large values of the mode k, at the onset of the 
universe, the effective value of the cosmological constant would be 
large enough to trigger inflation. However, as the state of the uni-
verse is decaying the effective value of the cosmological constant 
is decreasing. The current state of the universe would then corre-
spond to a very small value of the mode k.

3.1.3. Case 3: constant value of λ(a) ∝ √
E0

In this case, Eq. (17) would represent the quantum state of a 
universe for which

ω2
k (a,ϕ) = σ 2(H2

0a4 − a2 + Ek) + σ 2 H2
1a4, (47)

with

Ek = E0 sin2 πk
. (48)
N
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Eq. (47) is the frequency that arises in the third quantized model 
of a universe filled with a minimally coupled scalar field with mass 
m, like the field ϕ considered in this paper, and another massless 
scalar field which is conformally coupled to the background space–
time (see Refs. [29,30]). The conformally coupled masses scalar 
field can effectively mimic a radiation like field with an energy 
given by Ek [31,32]. Therefore, the result of the interaction be-
tween universes would imply in the present case the appearance 
of a radiation like content of the universe that would be of order 
E0 for large values of the mode k, and it would be decaying to the 
value Ek ≈ 0 for small values of the mode (Ek = 0 for k = 0). This 
effective content would imply the existence of a pre-inflationary 
stage of the universe that should have observable effects in the 
power spectrum of the CMB.

Let us consider the flat branch of a De Sitter (or quasi-De Sitter, 
i.e. Ḣ ≈ 0) space–time. Then Eq. (47) simplifies as,

ω2
k (a,ϕ) = σ 2(H2a4 + Ek), (49)

with H = 3�. The Friedmann equation turns out to be then

ȧ = ω(a)

a
= σ

a

√
H2a4 + Ek, (50)

with solutions given by

a(t) = a0 sinh
1
2 θ, (51)

where θ = 2Hσ t + θ0, with θ0 some constant to fit with the 
boundary conditions. At late times, the scale factor (51) grows in 
an exponential way approaching to an exact De Sitter expansion. 
However, at the earliest epoch it shows a deviation from de Sitter
evolution that would have a strong influence in the lowest modes 
of the CMB power spectrum [36,37,33].

In Refs. [33], it is analyzed the effects that a preinflationary 
phase dominated by an energy density inspired by the generalized 
Chaplygin gas [34] (see also Ref. [35])

ρ =
(

B1

aβ1(1+α1)
+ A1

) 1
1+α1

(52)

has in the power spectrum of the CMB. Let us notice that Eq. (52)
can reproduce a radiation dominated preinflationary stage of the 
universe, like the one studied in this paper, with a suitable choice 
of parameters: α1 = 0, β1 = 4, A1 = σ 2 H2, and B1 = σ 2 Ek . Then, 
the same procedure used in Ref. [36] can be applied here. The 
results (see also Ref. [37]) indicate that a radiation dominated pre-
inflationary stage of the universe may alleviate the quadrupole 
anomaly of the CMB in a better way than a matter dominated 
preinflationary stage. However, it is concluded that a greater de-
parture from De Sitter space–time is needed during the preinfla-
tionary stage in order to better fit with the observational data.

3.1.4. Case 4: Value of λ(a) ∝ a−1

Let us now analyze the case where λ(a) ∝ 1
a . This case is par-

ticularly interesting for at least two reasons: i) it shows also a 
preinflationary stage whose effects on the power spectrum of the 
CMB are expected to be stronger that those caused by a radiation 
dominated preinflationary stage [38], and ii) the quantum effect of 
the interacting multiverse have no classical analogue so it can be 
considered a distinguishable imprint of the multiverse on the cos-
mic observational data.

Let us first point out that a term proportional to a−2 in the fre-
quency in Eq. (2) arises also in the decomposition in partial waves 
of the wave function of a De Sitter space–time [21]. Such a de-
composition is equivalent to the interacting scheme presented here 
with a coupling function given by λ(a) ∝ a−1. It is therefore a pure 
Fig. 4. Time evolution of the scale factor: i) flat De Sitter (red), ii) matter-dominated 
pre-inflationary stage (blue), iii) radiation-dominated pre-inflationary stage (green), 
and iv) interacting multiverse pre-inflationary stage (black). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

quantum effect having no classical analogue. In both cases, it im-
plies the appearance of a term proportional to a−6 in the effective 
equation of the energy density. In contrast to the term a−4 caused 
by the radiation dominated preinflationary stage, the departure 
from De Sitter space–time caused by the interacting multiverse is 
thus stronger. The effective Friedmann equation for the flat branch 
of the De Sitter universe turns out now to be given by

ȧ = σ

a

√
H2a4 + Ck

a2
, (53)

where Ck is

Ck = C0 sin2 πk

N
, (54)

with C0 is some constant parameter, and solutions

a(t) = a0 sinh
1
3 θ, (55)

and θ = 3Hσ t + θ0, being a0 and θ0 constants of integration. The 
departure form the De Sitter evolution lead by the term propor-
tional to a−2 in the Friedmann equation (53) is stronger than the 
one produced by a radiation term (proportional to a0) (see Fig. 4). 
Therefore, it is expected that its effects on the lowest modes of 
the power spectrum of the CMB would provide a better fit with 
the observed data [38]. It would provide an observational support 
to the model presented in this paper and to the whole multi-
verse proposal. Thus, it provides with distinguishable predictions 
that can be compared with observational data, making therefore 
falseable the whole multiverse theory.

3.2. Double universe decay

The interacting picture developed in Sec. 2 opens up the pos-
sibility of new and interesting processes of vacuum decay such as 
the one depicted in Fig. 5. The decay between the vacuum state 
of the mode r and those of the mode k − 1 might occur through 
an intermediate vacuum decay into a metastable state given by the 
value V (ϕ = 0) of the mode k − 1. This state would rapidly decay 
into the vacuum states of modes in a process that parallels those 
occurring in quantum optics where a two-photon state is gener-
ated through a metastable state (see, for instance, Ref. [39]), where 
the radiation field turns out to be described in terms of pairs of 
entangled photons (see Fig. 5).
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Fig. 5. The vacuum decay can occur in a two-bubble decay process through the 
metastable state at V (ϕ0).

In the case of the vacuum decay of the space–time, it would 
result into the generation of two bubbles of true vacuum (of the 
lower false vacua) whose quantum states would be entangled,

φ = φ+(ϕ−)φ+(ϕ+) ± φ−(ϕ−)φ−(ϕ+), (56)

where φ±(ϕ±) are the expanding and contracting branches of 
Eq. (20), with V (ϕ±) ≈ V (ϕ±) + 1

2 V ′′(ϕ±)ϕ2.
The properties of the space–time inside the two entangled bub-

bles would be the same at large scales for observers inhabiting 
therein. For instance, the effective value of the cosmological con-
stant would be the same, given by �0 and the effective mass scale 
of the scalar field would be in both bubbles given by V ′′(ϕ±) =
m2( 1

λϕ
− 1), so the inner part of the two bubbles would be very 

similar at large scales.
If the two entangled bubbles would come out from a double in-

stanton, like the one studied in Ref. [29], then, the quantum state 
of one of the bubbles would be given by the reduced density ma-
trix that is obtained by tracing out the degrees of freedom of the 
partner bubble of the entangled pair, with a probability given by 
[29]

�/V ∝ e−2I , (57)

with

I = a+H

3

[
(a2+ + a2−)E(q) − 2a2−K (q)

]
, (58)

where K (q) and E(a) are the complete elliptic integrals of first 
and second kind. We could follow Ref. [29] to obtain the proba-
bility for the double Euclidean instanton given by the Euclidean 
solutions of Eq. (1) with the quartic potential (27). In general (see 
also Ref. [28]), the resulted state is a thermal state that is indistin-
guishable from a classical mixture so that observers inhabiting the 
bubbles would see the scalar field of their universes in a thermal 
state, being completely unaware of the entanglement properties of 
their bubbles. There is also a time reversal symmetry between the 
time variables of the entangled bubbles [29] so the regions inside 
the bubbles would present opposite symmetry assignments such 
as, for instance, baryon asymmetry or other discrete symmetries 
(see also Ref. [32]) that would be the consequence of the global 
symmetries of the entangled pair of bubbles. For an observer ex-
ternal to the bubbles, the symmetry assignments and asymmetries 
would disappear when he/she would consider the properties of the 
whole entangled pair. The question then is whether this would fix 
some of the apparent asymmetries of our universe.

4. Conclusions

In this work we have examined the implications of an interact-
ing multiverse and the issue of bubble nucleation of “true” vacua 
in the universes filled by the “false” vacuum at its genesis or later. 
The existence of a multiverse where the universes may interact 
opens up the door to a new scenario with important implications 
on the global structure of the universes. As a result of the inter-
actions it appears a landscape structure where the universes are 
created with different effective values of the cosmological constant. 
Thus, there exist the possibility of quantum tunneling transitions 
between different universal states giving rise to new bubbles with 
the corresponding value of their vacuum states.

The interaction between universes and the generation of new 
bubbles is expected to be dominant only for small length scales of 
the parent space–time, where quantum effects of the space–time 
are significant. However, these newborn bubbles may expand and 
generate new bubbles in a self-reproducing process.

The vacuum decay between the quantum states of two or more 
universes is expected to be cut off for large values of their scale 
factors. This condition imposes a restriction on the possible values 
of the coupling function in the interaction scheme presented in 
this paper. The possible cases of interest have been analysed and 
they all would have observable consequences in the global prop-
erties of each single universe. They could explain the very small 
value of the cosmological constant of our universe. However, a 
fine-tunning is always required making the proposal, in this re-
spect, no better than others cosmological scenarios [9]. In the case 
that the coupling function would be a constant, it would appear 
the existence of a pre-inflationary stage in the evolution of the 
single universes. A pre-inflationary stage would have observable 
implications in the power spectrum of the CMB of the universe 
[36]. Furthermore, it has been claimed that it would fit some of
the anomalies that most models of inflation present with respect 
to the latest observational data provided by Planck.

The interacting multiverse with a coupling function propor-
tional to a−1 provides us with a preinflationary stage of the uni-
verse whose departure from De Sitter expansion is stronger than 
the one caused by a radiation dominated preinflationary stage. This 
would be a pure quantum effect having no classical analogue so: 
i) it might hopefully alleviate the quadrupole anomaly of the CMB 
and, ii) it could provide distinguishable predictions of the multi-
verse that cannot be explained by any other known effect. Thus, 
the model of the multiverse presented in this paper entails distin-
guishable predictions that can be compared with current observa-
tional data being therefore falsifiable leading to implications that 
have not been considered so far.
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