1,448 research outputs found
Multiqubit symmetric states with high geometric entanglement
We propose a detailed study of the geometric entanglement properties of pure
symmetric N-qubit states, focusing more particularly on the identification of
symmetric states with a high geometric entanglement and how their entanglement
behaves asymptotically for large N. We show that much higher geometric
entanglement with improved asymptotical behavior can be obtained in comparison
with the highly entangled balanced Dicke states studied previously. We also
derive an upper bound for the geometric measure of entanglement of symmetric
states. The connection with the quantumness of a state is discussed
Isotopic distribution of fission fragments in collisions between 238U beam and 9Be and 12C targets at 24 MeV/u
Inverse kinematics coupled to a high-resolution spectrometer is used to
investigate the isotopic yields of fission fragments produced in reactions
between a 238U beam at 24 MeV/u and 9Be and 12C targets. Mass, atomic number
and isotopic distributions are reported for the two reactions. These
informations give access to the neutron excess and the isotopic distribution
widths, which together with the atomic-number and mass distributions are used
to investigate the fusion-fission dynamics.Comment: Submitted to PR
Zeebrugge Port extension sediment transport: measurement on and off the Belgian coast by means of tracers
An extensive program of tracer experiments was carried out for calculating sediment transport in the vicinity of the Port of Zeebrugge where extension operations are in progress. Offshore radioactive bottom tracers were used for studying the sand transport along the beaches where erosion problems exist. On the beach itself fluorescent tracers were used. For the evaluation of the silting-up rate of the access channels to the harbour a series of radioactive bottom and suspension tracers were tracked in situ. For determining the efficiency of future dumping grounds a combination of bottom tracers and suspension tracers was used. In total, 18 experiments with radioactive tracers were carried out and 9 with fluorescent ones
Structure of Be probed via secondary beam reactions
The low-lying level structure of the unbound neutron-rich nucleus Be
has been investigated via breakup on a carbon target of secondary beams of
B at 35 MeV/nucleon. The coincident detection of the beam velocity
Be fragments and neutrons permitted the invariant mass of the
Be+ and Be++ systems to be reconstructed. In the case of
the breakup of B, a very narrow structure at threshold was observed in
the Be+ channel. Contrary to earlier stable beam fragmentation
studies which identified this as a strongly interacting -wave virtual state
in Be, analysis here of the Be++ events demonstrated that
this was an artifact resulting from the sequential-decay of the
Be(2) state. Single-proton removal from B was found to
populate a broad low-lying structure some 0.70 MeV above the neutron-decay
threshold in addition to a less prominent feature at around 2.4 MeV. Based on
the selectivity of the reaction and a comparison with (0-3)
shell-model calculations, the low-lying structure is concluded to most probably
arise from closely spaced J=1/2 and 5/2 resonances
(E=0.400.03 and 0.85 MeV), whilst the broad
higher-lying feature is a second 5/2 level (E=2.350.14 MeV). Taken
in conjunction with earlier studies, it would appear that the lowest 1/2
and 1/2 levels lie relatively close together below 1 MeV.Comment: 14 pages, 13 figures, 2 tables. Accepted for publication in Physical
Review
A Protein-Protein Interaction Map of the Trypanosoma brucei Paraflagellar Rod
We have conducted a protein interaction study of components within a specific sub-compartment of a eukaryotic flagellum. The trypanosome flagellum contains a para-crystalline extra-axonemal structure termed the paraflagellar rod (PFR) with around forty identified components. We have used a Gateway cloning approach coupled with yeast two-hybrid, RNAi and 2D DiGE to define a protein-protein interaction network taking place in this structure. We define two clusters of interactions; the first being characterised by two proteins with a shared domain which is not sufficient for maintaining the interaction. The other cohort is populated by eight proteins, a number of which possess a PFR domain and sub-populations of this network exhibit dependency relationships. Finally, we provide clues as to the structural organisation of the PFR at the molecular level. This multi-strand approach shows that protein interactome data can be generated for insoluble protein complexes
Low-energy Coulomb excitation of Fe and Mn following in-beam decay of Mn
Sub-barrier Coulomb-excitation was performed on a mixed beam of Mn and
Fe, following in-trap decay of Mn at REX-ISOLDE,
CERN. The trapping and charge breeding times were varied in order to alter the
composition of the beam, which was measured by means of an ionisation chamber
at the zero-angle position of the Miniball array. A new transition was observed
at 418~keV, which has been tentatively associated to a
transition. This fixes the relative
positions of the -decaying and states in Mn for
the first time. Population of the state was observed in Fe
and the cross-section determined by normalisation to the Ag target
excitation, confirming the value measured in recoil-distance lifetime
experiments.Comment: 9 pages, 10 figure
Deterministic models of quantum fields
Deterministic dynamical models are discussed which can be described in
quantum mechanical terms. -- In particular, a local quantum field theory is
presented which is a supersymmetric classical model. The Hilbert space approach
of Koopman and von Neumann is used to study the classical evolution of an
ensemble of such systems. Its Liouville operator is decomposed into two
contributions, with positive and negative spectrum, respectively. The unstable
negative part is eliminated by a constraint on physical states, which is
invariant under the Hamiltonian flow. Thus, choosing suitable variables, the
classical Liouville equation becomes a functional Schroedinger equation of a
genuine quantum field theory. -- We briefly mention an U(1) gauge theory with
``varying alpha'' or dilaton coupling where a corresponding quantized theory
emerges in the phase space approach. It is energy-parity symmetric and,
therefore, a prototype of a model in which the cosmological constant is
protected by a symmetry.Comment: 6 pages; synopsis of hep-th/0510267, hep-th/0503069, hep-th/0411176 .
Talk at Constrained Dynamics and Quantum Gravity - QG05, Cala Gonone
(Sardinia, Italy), September 12-16, 2005. To appear in the proceeding
- …