4 research outputs found
The CXCL12, periostin and CCL9 genes are direct targets for early B-cell factor (EBF) in OP-9 stroma cells.
The development of blood cells from hematopoietic stem cells in the bone marrow is dependent on communication with bone marrow stroma cells, making these cells central for the appropriate regulation of hematopoiesis. To identify transcription factors that may play a role in gene regulation in stroma cells, we performed comparative gene expression analysis of fibroblastic NIH3T3 cells, unable to support hematopoiesis in vitro, and OP-9 stroma cells, highly efficient in this regard. These experiments revealed that transcription factors of the early B cell factor (EBF) family were highly expressed in OP-9 cells as compared with the NIH3T3 cells. To identify potential targets genes for EBF proteins in stroma cells, we overexpressed EBF in fibroblasts and analyzed the pattern of induced genes by microarray analysis. This revealed that EBF was able to up-regulate expression of among others the Cxcl12, Ccl9, and Periostin genes. The identification of relevant promoters revealed that they all contained functional EBF binding sites able to interact with EBF in OP-9 cells. Furthermore, ectopic expression of a dominant negative EBF protein or antisense EBF-1 RNA in OP-9 stroma cells resulted in reduced expression of these target genes. These data suggest that EBF proteins might have dual roles in hematopoiesis acting both as intrinsic regulators of B-lymphopoiesis and as regulators of genes in bone marrow stroma cells
Gremlin1 preferentially binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 over BMP-7
Gremlin (Grem1) is a member of the DAN family of secreted bone morphogenetic protein (BMP) antagonists. Bone morphogenetic protein-7 (BMP-7) mediates protective effects during renal fibrosis associated with diabetes and other renal diseases. The pathogenic mechanism of Grem1 during diabetic nephropathy (DN) has been suggested to be binding and inhibition of BMP-7. However, the precise interactions between Grem1, BMP-7 and other BMPs have not been accurately defined. In the present study, we show the affinity of Grem1 for BMP-7 is lower than that of BMP-2 and BMP-4, using a combination of surface plasmon resonance and cell culture techniques. Using kidney proximal tubule cells and HEK (human embryonic kidney)-293 cell Smad1/5/8 phosphorylation and BMP-dependent gene expression as readouts, Grem1 consistently demonstrated a higher affinity for BMP-2&gt;BMP-4&gt;BMP-7. Cell-associated Grem1 did not inhibit BMP-2- or BMP-4-mediated signalling, suggesting that Grem1–BMP-2 binding occurred in solution, preventing BMP receptor activation. These data suggest that Grem1 preferentially binds to BMP-2 and this may be the dominant complex in a disease situation where levels of Grem1 and BMPs are elevated.</jats:p
Gene expression analysis suggests that EBF-1 and PPARγ2 induce adipogenesis of NIH-3T3 cells with similar efficiency and kinetics
Differentiation of multipotent mesenchymal stem cells into lipid-accumulating adipocytes is a physiological process induced by transcription factors in combination with hormonal stimulation. We have used Affymetrix microarrays to compare the adipogenic differentiation pathways of NIH-3T3 fibroblasts induced to undergo in vitro differentiation by ectopic expression of early B cell factor (EBF)-1 or peroxisome proliferator-activated receptor (PPAR)gamma 2. These experiments revealed that commitment to the adipogenic pathway in the NIH-3T3 cells was not reflected in gene expression until 4 days after induction of differentiation. Furthermore, gene expression patterns at the earlier time points after stimulation indicated that EBF-1 and PPAR gamma 2 induced different sets of genes, while the similarities increased upon differentiation, and that several genes linked to adipocyte differentiation were also transiently induced in the vector-transduced cells. These data suggest that the initial activation of genes associated with adipocyte development is independent of commitment to the adipogenic pathway and that EBF-1 and PPAR gamma 2 induce adipocyte differentiation with comparable kinetics and efficiency