8 research outputs found
First insights into the vertical habitat use of the whitespotted eagle ray Aetobatus narinari revealed by pop‐up satellite archival tags
The whitespotted eagle ray Aetobatus narinari is a tropical to warm‐temperate benthopelagic batoid that ranges widely throughout the western Atlantic Ocean. Despite conservation concerns for the species, its vertical habitat use and diving behaviour remain unknown. Patterns and drivers in the depth distribution of A. narinari were investigated at two separate locations, the western North Atlantic (Islands of Bermuda) and the eastern Gulf of Mexico (Sarasota, Florida, U.S.A.). Between 2010 and 2014, seven pop‐up satellite archival tags were attached to A. narinari using three methods: a through‐tail suture, an external tail‐band and through‐wing attachment. Retention time ranged from 0 to 180 days, with tags attached via the through‐tail method retained longest. Tagged rays spent the majority of time (82.85 ± 12.17% S.D.) within the upper 10 m of the water column and, with one exception, no rays travelled deeper than ~26 m. One Bermuda ray recorded a maximum depth of 50.5 m, suggesting that these animals make excursions off the fore‐reef slope of the Bermuda Platform. Individuals occupied deeper depths (7.42 ± 3.99 m S.D.) during the day versus night (4.90 ± 2.89 m S.D.), which may be explained by foraging and/or predator avoidance. Each individual experienced a significant difference in depth and temperature distributions over the diel cycle. There was evidence that mean hourly depth was best described by location and individual variation using a generalized additive mixed model approach. This is the first study to compare depth distributions of A. narinari from different locations and describe the thermal habitat for this species. Our study highlights the importance of region in describing A. narinari depth use, which may be relevant when developing management plans, whilst demonstrating that diel patterns appear to hold across individuals
Phylogenomics and species delimitation for effective conservation of manta and devil rays
Practical biodiversity conservation relies on delineation of biologically meaningful units. Manta and devil rays (Mobulidae) are threatened worldwide, yet morphological similarities and a succession of recent taxonomic changes impede the development of an effective conservation strategy. Here, we generate genome‐wide single nucleotide polymorphism (SNP) data from a geographically and taxonomically representative set of manta and devil ray samples to reconstruct phylogenetic relationships and evaluate species boundaries under the general lineage concept. We show that nominal species units supported by alternative data sources constitute independently evolving lineages, and find robust evidence for a putative new species of manta ray in the Gulf of Mexico. Additionally, we uncover substantial incomplete lineage sorting indicating that rapid speciation together with standing variation in ancestral populations has driven phylogenetic uncertainty within Mobulidae. Finally, we detect cryptic diversity in geographically distinct populations, demonstrating that management below the species level may be warranted in certain species. Overall, our study provides a framework for molecular genetic species delimitation that is relevant to wide‐ranging taxa of conservation concern, and highlights the potential for genomic data to support effective management, conservation and law enforcement strategies
Recommended from our members
Breaking bags and crunching clams: assessing whitespotted eagle ray interactions with hard clam aquaculture gear
Shallow coastal waters are commonly used in shellfish aquaculture for 'grow-out' of bivalves like the hard clam Mercenaria mercenaria. These locations have substantially higher clam densities than the surrounding environment and attract molluscivores, requiring clammers to incorporate anti-predator materials into their grow-out gear to protect their product. However, the effectiveness of these materials against larger predators like rays remains untested. Inspired by clammer reports of predator-inflicted damage to grow-out gear, we assessed the capacity of the whitespotted eagle ray Aetobatus narinari to interact with clams housed within a suite of industry standard anti-predator materials. Mesocosm experiments were conducted where rays were exposed to unprotected clams (control), clams inside polyester mesh clam bags (dipped in a latex net coating and non-dipped), and under high density polyethylene (HDPE) or chicken wire cover netting. Gear interactions were quantified from video footage throughout the course of the experiment (5 h), and clam mortality was assessed after the completion of each trial. While rays were capable of consuming clams through bags, anti-predator treatments reduced clam mortality 4- to 10-fold compared to control plots. Double-layered (i.e. bags with cover netting) treatments had the lowest clam mortality (0.6 +/- 0.1%; mean +/- SE), highlighting the utility of this type of protection in limiting ray impacts. Though not significantly greater, we noted relatively high levels of interactions with HDPE netting over other materials, which was facilitated by the material ensnaring the lower dental plate of the rays. Clammers should consider adopting multi-layered anti-predator gear; however, resecuring materials periodically remains imperative at reducing ray interactions
Population Structure of <i>Aetobatus narinari</i> (Myliobatiformes) Caught by the Artisanal Fishery in Northeast Brazil
In Brazil, the Whitespotted Eagle Ray Aetobatus narinari is considered data-deficient due to the scarcity of basic information on its biology, ecology, and vulnerability to capture. Despite this, the species is caught by artisanal fishing along most of the coast, especially in the northeast of Brazil. This study analyzed mitochondrial DNA data in specimens of A. narinari caught by artisanal fishing in the northeast coast of Brazil to understand their population structure. For this, 42 individuals were sequenced at three mitochondrial genes: cytochrome oxidase 1 (COI), cytochrome b (Cytb), and NADH dehydrogenase subunit 4 (ND4). Concatenated COI-Cytb-ND4 sequences yielded 14 haplotypes, with moderate haplotype diversity (h = 0.646), low nucleotide diversity (π = 0.00087), and low fixation index ΦST values, indicating no population structure. Our results suggest that there is only one population of A. narinari in the study area. Genetic studies can contribute to improving management plans in these areas, avoiding the overexploitation of this and other species
Whitespotted eagle ray (Aetobatus narinari) age and growth in wild (in situ) versus aquarium-housed (ex situ) individuals: Implications for conservation and management
Elasmobranchs typically display slow growth, late maturity and low fecundity life history characteristics, making them vulnerable to fishing pressures and environmental perturbations. The whitespotted eagle ray (Aetobatus narinari), a large pelagic migratory ray with an endangered status on the IUCN Red List, fits this pattern based on available literature. Historically, age and growth parameters for this ray have been reported through vertebral ageing methods. However, the periodicity of vertebrate band pair formation, which is used for ageing, has not been validated for this species, making ageing accuracy and thus the resulting growth parameters uncertain. In this study, we used both a frequentist and Bayesian method of estimating sex-specific von Bertalanffy growth parameters (DW∞, k) in wild recaptured versus aquarium-housed rays. Additionally, we estimated growth from repeated measurement data collected from aquarium-housed rays, as an alternative approach to obtain growth parameters while allowing for individual variability. Between 2009 and 2020, 589 whitespotted eagle rays were caught, measured, tagged and released along the southwest coast of Florida. Of these rays, 34 were recaptured between 5–1413 days at liberty. Nineteen additional rays were collected during the same period, transported and maintained at Georgia Aquarium, Atlanta, where they were regularly weighted and measured. Data from Association of Zoos and Aquariums accredited facilities provided prior information on maximum size for the Bayesian estimations, and size at birth, size at maturity, and maximum life span. These data were used to plot and interpret von Bertalanffy growth curves. Wild whitespotted eagle rays were found to grow faster and mature earlier than previously thought, with Bayesian estimates of k = 0.28 year-1 in females, and k = 0.30 year-1 in males. Aquarium-housed individuals seemed to grow slower and reach smaller sizes, although data provided by the aquariums showed variable growth patterns depending on the facility. Longevity was estimated at 14-15 years in wild rays while maximum lifespan observed in aquariums was 19-20+ years. Life history parameters and growth trajectories generated from this study offer valuable information to aid with future conservation management strategies of this endangered species.ISSN:2296-774
DataSheet_1_Whitespotted eagle ray (Aetobatus narinari) age and growth in wild (in situ) versus aquarium-housed (ex situ) individuals: Implications for conservation and management.docx
Elasmobranchs typically display slow growth, late maturity and low fecundity life history characteristics, making them vulnerable to fishing pressures and environmental perturbations. The whitespotted eagle ray (Aetobatus narinari), a large pelagic migratory ray with an endangered status on the IUCN Red List, fits this pattern based on available literature. Historically, age and growth parameters for this ray have been reported through vertebral ageing methods. However, the periodicity of vertebrate band pair formation, which is used for ageing, has not been validated for this species, making ageing accuracy and thus the resulting growth parameters uncertain. In this study, we used both a frequentist and Bayesian method of estimating sex-specific von Bertalanffy growth parameters (DW∞, k) in wild recaptured versus aquarium-housed rays. Additionally, we estimated growth from repeated measurement data collected from aquarium-housed rays, as an alternative approach to obtain growth parameters while allowing for individual variability. Between 2009 and 2020, 589 whitespotted eagle rays were caught, measured, tagged and released along the southwest coast of Florida. Of these rays, 34 were recaptured between 5–1413 days at liberty. Nineteen additional rays were collected during the same period, transported and maintained at Georgia Aquarium, Atlanta, where they were regularly weighted and measured. Data from Association of Zoos and Aquariums accredited facilities provided prior information on maximum size for the Bayesian estimations, and size at birth, size at maturity, and maximum life span. These data were used to plot and interpret von Bertalanffy growth curves. Wild whitespotted eagle rays were found to grow faster and mature earlier than previously thought, with Bayesian estimates of k = 0.28 year-1 in females, and k = 0.30 year-1 in males. Aquarium-housed individuals seemed to grow slower and reach smaller sizes, although data provided by the aquariums showed variable growth patterns depending on the facility. Longevity was estimated at 14-15 years in wild rays while maximum lifespan observed in aquariums was 19-20+ years. Life history parameters and growth trajectories generated from this study offer valuable information to aid with future conservation management strategies of this endangered species.</p
Recommended from our members
Movescapes and eco‐evolutionary movement strategies in marine fish: Assessing a connectivity hotspot
Data from the Integrated Tracking of Aquatic Animals in the Gulf of Mexico (iTAG) network, and sister networks, were used to evaluate fish movements in the Florida Keys—an extensive reef fish ecosystem just north of Cuba connecting the Atlantic Ocean and Gulf of Mexico. We analysed ~2 million detections for 23 species, ranging from reef fish such as Nassau grouper (Epinephelus striatus, Serranidae) to migratory apex predators such as white sharks (Carcharodon carcharias, Lamnidae). To facilitate comparisons across species, we used an eco‐evolutionary movement strategy framework that identified measurable movement traits and their proximate and ultimate drivers. Detectability was species‐specific and quantified with a detection potential index. Life stages detected in the study area varied by species and residency varied with life stage. Four annual movement types were identified as follows: high site‐fidelity residents, range residents, seasonal migrants and general migrants. The endangered smalltooth sawfish (Pristis pectinata, Pristidae), a seasonal migrant, exhibited the greatest within‐ecosystem connectivity. Site attachment, stopover and deep‐water migration behaviours differed between individuals, species and annual movement types. All apex predators were migratory. General migrants were significantly larger than fish in the other movement types, a life‐history and movement trait combination that is common but not exclusive, as many small pelagics also migrate. Most teleosts exhibited movements associated with spawning. As concerns grow over habitat and biodiversity loss, multispecies movescapes, such as presented here, are expected to play an increasingly important role in informing ecosystem‐based and non‐extractive fisheries management strategies
Recommended from our members
Regional-scale variability in the movement ecology of marine fishes revealed by an integrative acoustic tracking network
Marine fish movement plays a critical role in ecosystem functioning and is increasingly studied with acoustic telemetry. Traditionally, this research has focused on single species and small spatial scales. However, integrated tracking networks, such as the Integrated Tracking of Aquatic Animals in the Gulf of Mexico (iTAG) network, are building the capacity to monitor multiple species over larger spatial scales. We conducted a synthesis of passive acoustic monitoring data for 29 species (889 transmitters), ranging from large top predators to small consumers, monitored along the west coast of Florida, USA, over 3 yr (2016-2018). Space use was highly variable, with some groups using all monitored areas and others using only the area where they were tagged. The most extensive space use was found for Atlantic tarpon Megalops atlanticus and bull sharks Carcharhinus leucas. Individual detection patterns clustered into 4 groups, ranging from occasionally detected long-distance movers to frequently detected juvenile or adult residents. Synchronized, alongshore, long-distance movements were found for Atlantic tarpon, cobia Rachycentron canadum, and several elasmobranch species. These movements were predominantly northbound in spring and southbound in fall. Detections of top predators were highest in summer, except for nearshore Tampa Bay where the most detections occurred in fall, coinciding with large red drum Sciaenops ocellatus spawning aggregations. We discuss the future of collaborative telemetry research, including current limitations and potential solutions to maximize its impact for understanding movement ecology, conducting ecosystem monitoring, and supporting fisheries management