918 research outputs found

    A full lifespan model of vertebrate lens growth

    Get PDF
    The mathematical determinants of vertebrate organ growth have yet to be elucidated fully. Here, we utilized empirical measurements and a dynamic branching process-based model to examine the growth of a simple organ system, the mouse lens, from E14.5 until the end of life. Our stochastic model used difference equations to model immigration and emigration between zones of the lens epithelium and included some deterministic elements, such as cellular footprint area. We found that the epithelial cell cycle was shortened significantly in the embryo, facilitating the rapid growth that marks early lens development. As development progressed, epithelial cell division becomes non-uniform and four zones, each with a characteristic proliferation rate, could be discerned. Adjustment of two model parameters, proliferation rate and rate of change in cellular footprint area, was sufficient to specify all growth trajectories. Modelling suggested that the direction of cellular migration across zonal boundaries was sensitive to footprint area, a phenomenon that may isolate specific cell populations. Model runs consisted of more than 1000 iterations, in each of which the stochastic behaviour of thousands of cells was followed. Nevertheless, sequential runs were almost superimposable. This remarkable degree of precision was attributed, in part, to the presence of non-mitotic flanking regions, which constituted a path by which epithelial cells could escape the growth process. Spatial modelling suggested that clonal clusters of about 50 cells are produced during migration and that transit times lengthen significantly at later stages, findings with implications for the formation of certain types of cataract

    Translating for the Theatre: The Case Against Performability

    Get PDF

    On Rereading Homer’s Iliad in the Twenty-first Century

    Get PDF
    No abstrac

    President's letter

    Get PDF
    No abstract available

    A method for determining cell number in the undisturbed epithelium of the mouse lens

    Get PDF
    The anterior face of the mouse lens is covered by a layer of epithelial cells. The epithelial cells serve a barrier function at the lens surface and as a progenitor population from which lens fiber cells, the predominant cell type of the lens, are derived. Decreased epithelial cell density is commonly observed during aging and cataract formation in humans and animal models and may contribute directly to tissue opacification. However, the loss of cells from the epithelium is often not easy to quantify, in part because the cells are arrayed across a near-spherical surface and, as a consequence, are difficult to image and count. Here, we describe a technique for determining epithelial cell number in the undisturbed lens of the mouse, a popular cataract model. The method utilizes orthographic projections of confocal images collected from the anterior and equatorial regions of the lens. The overlapping projections are brought into register using the unique distribution of proliferating cells as fiduciary points. Cell counts are performed using a computer-assisted method. This approach offers several advantages over flat-mount methods employed previously

    Proteomic analysis of the bovine and human ciliary zonule

    Get PDF
    PURPOSE: The zonule of Zinn (ciliary zonule) is a system of fibers that centers the crystalline lens on the optical axis of the eye. Mutations in zonule components underlie syndromic conditions associated with a broad range of ocular pathologies, including microspherophakia and ectopia lentis. Here, we used HPLC–mass spectrometry to determine the molecular composition of the zonule. METHODS: Tryptic digests of human and bovine zonular samples were analyzed by HPLC–mass spectrometry. The distribution of selected components was confirmed by immunofluorescence confocal microscopy. In bovine samples, the composition of the equatorial zonule was compared to that of the hyaloid zonule and vitreous humor. RESULTS: The 52 proteins common to the zonules of both species accounted for >95% of the zonular protein. Glycoproteins constituted the main structural components, with two proteins, FBN1 and LTBP2, constituting 70%–80% of the protein. Other abundant components were MFAP2, EMILIN-1, and ADAMTSL-6. Lysyl oxidase-like 1, a crosslinking enzyme implicated in collagen and elastin biogenesis, was detected at significant levels. The equatorial and hyaloid zonular samples were compositionally similar to each other, although the hyaloid sample was relatively enriched in the proteoglycan opticin and the fibrillar collagens COL2A1, COL11A1, COL5A2, and COL5A3. CONCLUSIONS: The zonular proteome was surprisingly complex. In addition to structural components, it contained signaling proteins, protease inhibitors, and crosslinking enzymes. The equatorial and hyaloid zonules were similar in composition, but the latter may form part of a composite structure, the hyaloid membrane, that stabilizes the vitreous face

    The cause and consequence of fiber cell compaction in the vertebrate lens

    Get PDF
    Fiber cells of the ocular lens are arranged in a series of concentric shells. New growth shells are added continuously to the lens surface and, as a consequence, the preexisting shells are buried. To focus light, the refractive index of the lens cytoplasm must exceed that of the surrounding aqueous and vitreous humors, and to that end, lens cells synthesize high concentrations of soluble proteins, the crystallins. To correct for spherical aberration, it is necessary that the crystallin concentration varies from shell-to-shell, such that cellular protein content is greatest in the center of the lens. The radial variation in protein content underlies the critical gradient index (GRIN) structure of the lens. Only the outermost shells of lens fibers contain the cellular machinery necessary for protein synthesis. It is likely, therefore, that the GRIN (which spans the synthetically inactive, organelle-free zone of the lens) does not result from increased levels of protein synthesis in the core of the lens but is instead generated through loss of volume by inner fiber cells. Because volume is lost primarily in the form of cell water, the residual proteins in the central lens fibers can be concentrated to levels of >500 mg/ml. In this short review, we describe the process of fiber cell compaction, its relationship to lens growth and GRIN formation, and offer some thoughts on the likely nature of the underlying mechanism

    Single-cell RNA-sequencing analysis of the ciliary epithelium and contiguous tissues in the mouse eye

    Get PDF
    The ciliary epithelium plays a central role in ocular homeostasis but cells of the pigmented and non-pigmented layers are difficult to isolate physically and study. Here we used single-cell RNA-sequencing (scRNA-seq) to analyze the transcriptional signatures of cells harvested from the ciliary body and contiguous tissues. Microdissected tissue was dissociated by collagenase digestion and the transcriptomes of individual cells were obtained using a droplet-based scRNA-seq approach. In situ hybridization was used to verify the expression patterns of selected differentially-expressed genes. High quality transcriptomes were obtained from 10,024 cells and unsupervised clustering distinguished 22 cell types. Although efforts were made to specifically isolate the ciliary body, approximately half of the sequenced cells were derived from the adjacent retina. Cluster identities were assigned using expression of canonical markers or cluster-specific genes. The transcriptional signature of cells in the PCE and NPCE were distinct from each other and from cells in contiguous tissues. PCE cell transcriptomes were characterized by genes involved in melanin synthesis and transport proteins such as Slc4a4. Among the most differentially expressed genes in NPCE cells were those encoding members of the Zic family of transcription factors (Zic1, 2, 4), collagen XVIII (Col18a1), and corticotrophin-releasing hormone-binding protein (Crhbp). The ocular melanocyte population was distinguished by expression of the gap junction genes Gjb2 and Gjb6. Two fibroblast signatures were detected in the ciliary body preparation and shown by in situ hybridization to correspond to uveal and scleral populations. This cell atlas for the ciliary body and contiguous layers represents a useful resource that may facilitate studies into the development of the ciliary epithelium, the production of the aqueous and vitreous humors, and the synthesis of the ciliary zonule
    • …
    corecore