6,520 research outputs found
Towards Quantum Superpositions of a Mirror: an Exact Open Systems Analysis - Calculational Details
We give details of calculations analyzing the proposed mirror superposition
experiment of Marshall, Simon, Penrose, and Bouwmeester within different
stochastic models for state vector collapse. We give two methods for exactly
calculating the fringe visibility in these models, one proceeding directly from
the equation of motion for the expectation of the density matrix, and the other
proceeding from solving a linear stochastic unravelling of this equation. We
also give details of the calculation that identifies the stochasticity
parameter implied by the small displacement Taylor expansion of the CSL model
density matrix equation. The implications of the two results are briefly
discussed. Two pedagogical appendices review mathematical apparatus needed for
the calculations.Comment: 9 pages, LaTeX. Minor changes mad
Effect of metal clusters on the swelling of gold-fluorocarbon-polymer composite films
We have investigated the phenomenon of swelling due to acetone diffusion in
fluorocarbon polymer films doped with different gold concentrations below the
percolation threshold. The presence of the gold clusters in the polymer is
shown to improve the mixing between the fluorocarbon polymer and the acetone,
which is not a good solvent for this kind of polymers. In order to explain the
experimental results the stoichiometry and the morphology of the polymer--metal
system have been studied and a modified version of the Flory--Huggins model has
been developed
Prey selection by an apex predator : the importance of sampling uncertainty.
The impact of predation on prey populations has long been a focus of ecologists, but a firm understanding of the factors influencing prey selection, a key predictor of that impact, remains elusive. High levels of variability observed in prey selection may reflect true differences in the ecology of different communities but might also reflect a failure to deal adequately with uncertainties in the underlying data. Indeed, our review showed that less than 10% of studies of European wolf predation accounted for sampling uncertainty. Here, we relate annual variability in wolf diet to prey availability and examine temporal patterns in prey selection; in particular, we identify how considering uncertainty alters conclusions regarding prey selection.
Over nine years, we collected 1,974 wolf scats and conducted drive censuses of ungulates in Alpe di Catenaia, Italy. We bootstrapped scat and census data within years to construct confidence intervals around estimates of prey use, availability and selection. Wolf diet was dominated by boar (61.5±3.90 [SE] % of biomass eaten) and roe deer (33.7±3.61%). Temporal patterns of prey densities revealed that the proportion of roe deer in wolf diet peaked when boar densities were low, not when roe deer densities were highest. Considering only the two dominant prey types, Manly's standardized selection index using all data across years indicated selection for boar (mean = 0.73±0.023). However, sampling error resulted in wide confidence intervals around estimates of prey selection. Thus, despite considerable variation in yearly estimates, confidence intervals for all years overlapped. Failing to consider such uncertainty could lead erroneously to the assumption of differences in prey selection among years. This study highlights the importance of considering temporal variation in relative prey availability and accounting for sampling uncertainty when interpreting the results of dietary studies
Collapse models with non-white noises
We set up a general formalism for models of spontaneous wave function
collapse with dynamics represented by a stochastic differential equation driven
by general Gaussian noises, not necessarily white in time. In particular, we
show that the non-Schrodinger terms of the equation induce the collapse of the
wave function to one of the common eigenstates of the collapsing operators, and
that the collapse occurs with the correct quantum probabilities. We also
develop a perturbation expansion of the solution of the equation with respect
to the parameter which sets the strength of the collapse process; such an
approximation allows one to compute the leading order terms for the deviations
of the predictions of collapse models with respect to those of standard quantum
mechanics. This analysis shows that to leading order, the ``imaginary'' noise
trick can be used for non-white Gaussian noise.Comment: Latex, 20 pages;references added and minor revisions; published as J.
Phys. A: Math. Theor. {\bf 40} (2007) 15083-1509
Mesoporous Si and multi-layered Si/C films by Pulsed Laser Deposition as Li-ion microbattery anodes
Silicon is a very attractive Li-ion battery anode material due to its high theoretical capacity, but proper nanostructuring is needed to accommodate the large volume expansion/shrinkage upon reversible cycling. Hereby, novel mesoporous Si nanostructures are grown at room temperature by simple and rapid Pulsed Laser Deposition (PLD) directly on top of the Cu current collector surface. The samples are characterised from the structural/morphological viewpoint and their promising electrochemical behaviour demonstrated in lab-scale lithium cells. Depending on the porosity, easily tuneable by PLD, specific capacities approaching 250 μAh cm−2 are obtained. Successively, newly elaborated bicomponent silicon/carbon nanostructures are fabricated in one step by alternating PLD deposition of Si and C, thus resulting in novel multi-layered composite mesoporous films exhibiting profoundly improved performance. Alternated deposition of Si/C layers by PLD is proven to be a straightforward method to produce multi-layered anodes in one processing step. The addition of carbon and mild annealing at 400 °C stabilize the electrochemical performance of the Si based nanostructures in lab-scale lithium cells, allowing to reach very stable prolonged reversible cycling at improved specific capacity values. This opens the way to further reducing processing steps and processing time, which are key aspects when upscaling is sought
Breaking quantum linearity: constraints from human perception and cosmological implications
Resolving the tension between quantum superpositions and the uniqueness of
the classical world is a major open problem. One possibility, which is
extensively explored both theoretically and experimentally, is that quantum
linearity breaks above a given scale. Theoretically, this possibility is
predicted by collapse models. They provide quantitative information on where
violations of the superposition principle become manifest. Here we show that
the lower bound on the collapse parameter lambda, coming from the analysis of
the human visual process, is ~ 7 +/- 2 orders of magnitude stronger than the
original bound, in agreement with more recent analysis. This implies that the
collapse becomes effective with systems containing ~ 10^4 - 10^5 nucleons, and
thus falls within the range of testability with present-day technology. We also
compare the spectrum of the collapsing field with those of known cosmological
fields, showing that a typical cosmological random field can yield an efficient
wave function collapse.Comment: 13 pages, LaTeX, 3 figure
Bulk Cr tips for scanning tunneling microscopy and spin-polarized scanning tunneling microscopy
A simple, reliable method for preparation of bulk Cr tips for Scanning
Tunneling Microscopy (STM) is proposed and its potentialities in performing
high-quality and high-resolution STM and Spin Polarized-STM (SP-STM) are
investigated. Cr tips show atomic resolution on ordered surfaces. Contrary to
what happens with conventional W tips, rest atoms of the Si(111)-7x7
reconstruction can be routinely observed, probably due to a different
electronic structure of the tip apex. SP-STM measurements of the Cr(001)
surface showing magnetic contrast are reported. Our results reveal that the
peculiar properties of these tips can be suited in a number of STM experimental
situations
Kinin-B1 receptors in ischaemia-induced pancreatitis: Functional importance and cellular localisation
In this study we compare the role of kininB1 and B2 receptors during ischaemia/reperfusion of rat pancreas. Our investigations were prompted by the observation that infusion of a kininB2 receptor antagonist produced significant improvement in acute experimental pancreatitis. In an acute model with two hours of ischaemia/two hours of reperfusion, application of the kininB1 receptor antagonist (CP-0298) alone, or in combination with kininB2 receptor antagonist (CP-0597), significantly reduced the number of adherent leukocytes in postcapillary venules. In a chronic model with five days of reperfusion, the continuous application of kininB1 receptor antagonist or a combination of kininB1 and B2 receptor antagonists markedly reduced the survival rate. In kininreceptor binding studies kininB1 receptor showed a 22-fold increase in expression during the time of ischaemia/ reperfusion. Carboxypeptidase M activity was upregulated 10-fold following two hours of ischaemia and two hours of reperfusion, provided the appropriate specific ligand, desArg10-kallidin and/or desArg9-bradykinin, was used. The occurrence of kininB1 receptor binding sites on acinar cell membranes was demonstrated by microautoradiography. With a specific antibody, the localisation of kininB1 receptor protein was confirmed at the same sites. In conclusion, we have demonstrated the upregulation of the pancreatic acinar cell kininB1 receptors during ischaemia/reperfusion. The novel functional finding was that antagonism of the kininB1 receptors decreased the survival rate in an experimental model of pancreatitis
Towards Quantum Superpositions of a Mirror: an Exact Open Systems Analysis
We analyze the recently proposed mirror superposition experiment of Marshall,
Simon, Penrose, and Bouwmeester, assuming that the mirror's dynamics contains a
non-unitary term of the Lindblad type proportional to -[q,[q,\rho]], with q the
position operator for the center of mass of the mirror, and \rho the
statistical operator. We derive an exact formula for the fringe visibility for
this system. We discuss the consequences of our result for tests of
environmental decoherence and of collapse models. In particular, we find that
with the conventional parameters for the CSL model of state vector collapse,
maintenance of coherence is expected to within an accuracy of at least 1 part
in 10^{8}. Increasing the apparatus coupling to environmental decoherence may
lead to observable modifications of the fringe visibility, with time dependence
given by our exact result.Comment: 4 pages, RevTeX. Substantial changes mad
- …
