4,335 research outputs found

    A mechanistic model of connector hubs, modularity, and cognition

    Full text link
    The human brain network is modular--comprised of communities of tightly interconnected nodes. This network contains local hubs, which have many connections within their own communities, and connector hubs, which have connections diversely distributed across communities. A mechanistic understanding of these hubs and how they support cognition has not been demonstrated. Here, we leveraged individual differences in hub connectivity and cognition. We show that a model of hub connectivity accurately predicts the cognitive performance of 476 individuals in four distinct tasks. Moreover, there is a general optimal network structure for cognitive performance--individuals with diversely connected hubs and consequent modular brain networks exhibit increased cognitive performance, regardless of the task. Critically, we find evidence consistent with a mechanistic model in which connector hubs tune the connectivity of their neighbors to be more modular while allowing for task appropriate information integration across communities, which increases global modularity and cognitive performance

    Dynamic reconfiguration of human brain networks during learning

    Get PDF
    Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes -- flexibility and selection -- must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we explore the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.Comment: Main Text: 19 pages, 4 figures Supplementary Materials: 34 pages, 4 figures, 3 table

    Small-World Brain Networks Revisited.

    Get PDF
    It is nearly 20 years since the concept of a small-world network was first quantitatively defined, by a combination of high clustering and short path length; and about 10 years since this metric of complex network topology began to be widely applied to analysis of neuroimaging and other neuroscience data as part of the rapid growth of the new field of connectomics. Here, we review briefly the foundational concepts of graph theoretical estimation and generation of small-world networks. We take stock of some of the key developments in the field in the past decade and we consider in some detail the implications of recent studies using high-resolution tract-tracing methods to map the anatomical networks of the macaque and the mouse. In doing so, we draw attention to the important methodological distinction between topological analysis of binary or unweighted graphs, which have provided a popular but simple approach to brain network analysis in the past, and the topology of weighted graphs, which retain more biologically relevant information and are more appropriate to the increasingly sophisticated data on brain connectivity emerging from contemporary tract-tracing and other imaging studies. We conclude by highlighting some possible future trends in the further development of weighted small-worldness as part of a deeper and broader understanding of the topology and the functional value of the strong and weak links between areas of mammalian cortex.DSB acknowledges support from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the Army Research Laboratory and the Army Research Office through contract numbers W911NF-10-2-0022 and W911NF-14-1-0679, the National Institute of Health (2-R01-DC-009209-11, 1R01HD086888-01, R01-MH107235, R01-MH107703, and R21-M MH-106799), the Office of Naval Research, and the National Science Foundation (BCS-1441502, CAREER PHY-1554488, and BCS-1631550).This is the final version of the article. It first appeared from Sage at http://dx.doi.org/10.1177/1073858416667720

    Massless Metric Preheating

    Get PDF
    Can super-Hubble metric perturbations be amplified exponentially during preheating ? Yes. An analytical existence proof is provided by exploiting the conformal properties of massless inflationary models. The traditional conserved quantity \zeta is non-conserved in many regions of parameter space. We include backreaction through the homogeneous parts of the inflaton and preheating fields and discuss the role of initial conditions on the post-preheating power-spectrum. Maximum field variances are strongly underestimated if metric perturbations are ignored. We illustrate this in the case of strong self-interaction of the decay products. Without metric perturbations, preheating in this case is very inefficient. However, metric perturbations increase the maximum field variances and give alternative channels for the resonance to proceed. This implies that metric perturbations can have a large impact on calculations of relic abundances of particles produced during preheating.Comment: 8 pages, 4 colour figures. Version to appear in Phys. Rev. D. Contains substantial new analysis of the ranges of parameter space for which large changes to the inflation-produced power spectrum are expecte
    • …
    corecore