1,373 research outputs found
Patterned Irradiation of YBa_2Cu_3O_(7-x) Thin Films
We present a new experiment on YBa_2Cu_3O_{7-x} (YBCO) thin films using
spatially resolved heavy ion irradiation. Structures consisting of a periodic
array of strong and weak pinning channels were created with the help of metal
masks. The channels formed an angle of +/-45 Deg with respect to the symmetry
axis of the photolithographically patterned structures. Investigations of the
anisotropic transport properties of these structures were performed. We found
striking resemblance to guided vortex motion as it was observed in YBCO single
crystals containing an array of unidirected twin boundaries. The use of two
additional test bridges allowed to determine in parallel the resistivities of
the irradiated and unirradiated parts as well as the respective current-voltage
characteristics. These measurements provided the input parameters for a
numerical simulation of the potential distribution of the Hall patterning. In
contrast to the unidirected twin boundaries in our experiment both strong and
weak pinning regions are spatially extended. The interfaces between
unirradiated and irradiated regions therefore form a Bose-glass contact. The
experimentally observed magnetic field dependence of the transverse voltage
vanishes faster than expected from the numerical simulation and we interpret
this as a hydrodynamical interaction between a Bose-glass phase and a vortex
liquid.Comment: 7 pages, 8 Eps figures included. Submitted to PR
Probabilistic Timed Automata with Clock-Dependent Probabilities
Probabilistic timed automata are classical timed automata extended with
discrete probability distributions over edges. We introduce clock-dependent
probabilistic timed automata, a variant of probabilistic timed automata in
which transition probabilities can depend linearly on clock values.
Clock-dependent probabilistic timed automata allow the modelling of a
continuous relationship between time passage and the likelihood of system
events. We show that the problem of deciding whether the maximum probability of
reaching a certain location is above a threshold is undecidable for
clock-dependent probabilistic timed automata. On the other hand, we show that
the maximum and minimum probability of reaching a certain location in
clock-dependent probabilistic timed automata can be approximated using a
region-graph-based approach.Comment: Full version of a paper published at RP 201
High Frequency Quantum Admittance and Noise Measurement with an On-chip Resonant Circuit
By coupling a quantum detector, a superconductor-insulator-superconductor
junction, to a Josephson junction \textit{via} a resonant circuit we probe the
high frequency properties, namely the ac complex admittance and the current
fluctuations of the Josephson junction at the resonant frequencies. The
admittance components show frequency dependent singularities related to the
superconducting density of state while the noise exhibits a strong frequency
dependence, consistent with theoretical predictions. The circuit also allows to
probe separately the emission and absorption noise in the quantum regime of the
superconducting resonant circuit at equilibrium. At low temperature the
resonant circuit exhibits only absorption noise related to zero point
fluctuations, whereas at higher temperature emission noise is also present.Comment: 15 pages, 15 figure
Shift of the surface-barrier part of the irreversibility line due to columnar defects in Bi_2Sr_2CaCu_2O_8 thin films
We report the results of studying the influence of the uranium-ion
irradiation of the Bi_2Sr_2CaCu_2O_8 thin films on the high-temperature part
(close to critical temperature) of their irreversibility line. We studied
irreversible properties of the films by measuring the hysteresis of nonresonant
microwave absorption. The results have revealed the shift of irreversibility
line towards low temperatures and magnetic fields. The effect is most
significant for the films irradiated with large doses, more than 1T. This fact
is in good agreement with the theoretical prediction by Koshelev and Vinokur of
suppression of surface barrier by columnar defects.Comment: LaTeX2e, 9 pages with 3 figures, to be published in Physica
Development and evaluation of double locus sequence typing for molecular epidemiological investigations of Clostridium difficile.
Despite the development of novel typing methods based on whole genome sequencing, most laboratories still rely on classical molecular methods for outbreak investigation or surveillance. Reference methods for Clostridium difficile include ribotyping and pulsed-field gel electrophoresis, which are band-comparing methods often difficult to establish and which require reference strain collections. Here, we present the double locus sequence typing (DLST) scheme as a tool to analyse C. difficile isolates. Using a collection of clinical C. difficile isolates recovered during a 1-year period, we evaluated the performance of DLST and compared the results to multilocus sequence typing (MLST), a sequence-based method that has been used to study the structure of bacterial populations and highlight major clones. DLST had a higher discriminatory power compared to MLST (Simpson's index of diversity of 0.979 versus 0.965) and successfully identified all isolates of the study (100 % typeability). Previous studies showed that the discriminatory power of ribotyping was comparable to that of MLST; thus, DLST might be more discriminatory than ribotyping. DLST is easy to establish and provides several advantages, including absence of DNA extraction [polymerase chain reaction (PCR) is performed on colonies], no specific instrumentation, low cost and unambiguous definition of types. Moreover, the implementation of a DLST typing scheme on an Internet database, such as that previously done for Staphylococcus aureus and Pseudomonas aeruginosa ( http://www.dlst.org ), will allow users to easily obtain the DLST type by submitting directly sequencing files and will avoid problems associated with multiple databases
Heat Shock Proteins Alterations in Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disease characterized by the attack of the immune system on the body’s healthy joint lining and degeneration of articular structures. This disease involves an increased release of inflammatory mediators in the affected joint that sensitize sensory neurons and create a positive feedback loop to further enhance their release. Among these mediators, the cytokines and neuropeptides are responsible for the crippling pain and the persistent neurogenic inflammation associated with RA. More importantly, specific proteins released either centrally or peripherally have been shown to play opposing roles in the pathogenesis of this disease: an inflammatory role that mediates and increases the severity of inflammatory response and/or an anti-inflammatory and protective role that modulates the process of inflammation. In this review, we will shed light on the neuroimmune function of different members of the heat shock protein (HSPs) family and the complex manifold actions that they exert during the course of RA. Specifically, we will focus our discussion on the duality in the mechanism of action of Hsp27, Hsp60, Hsp70, and Hsp90
Pomalidomide and dexamethasone grant rapid haematologic responses in patients with relapsed and refractory AL amyloidosis: a European retrospective series of 153 patients
Pomalidomide demonstrated activity in the treatment of AL amyloidosis in three phase II clinical trials. We evaluated the safety and efficacy of 28-day cycles of pomalidomide and dexamethasone in 153 previously treated patients with systemic AL amyloidosis. Ninety-nine (65%) were refractory to the last line of therapy and 54 (35%) had relapsed. The median number of previous lines of therapy was 3 (range: 2–7): 143 patients (93%) previously received bortezomib, 124 (81%) lenalidomide, 114 (75%) oral melphalan, and 37 (24%) underwent autologous stem cell transplant. At the completion of cycle 6, 68 (44%) patients obtained at least partial haematologic response, with 5 complete responses (CR, 3%), 35 very good partial responses (VGPR, 23%). Haematologic response resulted in improved overall survival (median survival 50 vs. 27 months, p = .033) in a 6 months landmark analysis. Obtaining at least partial response was also associated with a significant improvement of the progression-free survival (median PFS 37 vs. 18 months, p < .001). Pomalidomide is an effective treatment for heavily pre-treated patients with AL amyloidosis. Haematologic responses are associated with an overall survival advantage
Patterned Irradiation of YBa_2Cu_3O_(7-x) Thin Films
We present a new experiment on YBa_2Cu_3O_{7-x} (YBCO) thin films using
spatially resolved heavy ion irradiation. Structures consisting of a periodic
array of strong and weak pinning channels were created with the help of metal
masks. The channels formed an angle of +/-45 Deg with respect to the symmetry
axis of the photolithographically patterned structures. Investigations of the
anisotropic transport properties of these structures were performed. We found
striking resemblance to guided vortex motion as it was observed in YBCO single
crystals containing an array of unidirected twin boundaries. The use of two
additional test bridges allowed to determine in parallel the resistivities of
the irradiated and unirradiated parts as well as the respective current-voltage
characteristics. These measurements provided the input parameters for a
numerical simulation of the potential distribution of the Hall patterning. In
contrast to the unidirected twin boundaries in our experiment both strong and
weak pinning regions are spatially extended. The interfaces between
unirradiated and irradiated regions therefore form a Bose-glass contact. The
experimentally observed magnetic field dependence of the transverse voltage
vanishes faster than expected from the numerical simulation and we interpret
this as a hydrodynamical interaction between a Bose-glass phase and a vortex
liquid.Comment: 7 pages, 8 Eps figures included. Submitted to PR
High kinetic inductance microwave resonators made by He-Beam assisted deposition of tungsten nanowires
We evaluate the performance of hybrid microwave resonators made by combining sputtered Nb thin films with Tungsten nanowires grown with a He-beam induced deposition technique. Depending on growth conditions, the nanowires have a typical width w [35 - 75] nm and thickness t [5 - 40] nm. We observe a high normal state resistance R [65 - 150] Ω / which together with a critical temperature T c [4 - 6] K ensures a high kinetic inductance making the resonator strongly nonlinear. Both lumped and coplanar waveguide resonators were fabricated and measured at low temperature exhibiting internal quality factors up to 3990 at 4.5 GHz in the few photon regime. Analyzing the wire length, temperature, and microwave power dependence, we extracted a kinetic inductance for the W nanowire of L K 15 pH / which is 250 times higher than the geometrical inductance, and a Kerr non-linearity as high as K W, He / 2 π = 200 ± 120 Hz / photon at 4.5 GHz. The nanowires made with the helium focused ion beam are thus versatile objects to engineer compact, high impedance, superconducting environments with a mask and resist free direct write process
- …