63 research outputs found

    Liquid actuated gravity experiments

    Get PDF
    We describe a new actuation technique for gravity experiments based on a liquid field mass. The Characterizing idea is to modulate the gravity force acting on a test mass by controlling the level of a liquid in a suitable container. This allows to obtain a periodical gravity force without moving parts (except the liquid level) close to the TM. We describe in detail the most relevant aspects of the liquid actuator and discuss how it can be used in gravity experiments. In particular we analyse an application to test the inverse square law in the mm to cm distance region

    A quasi-complete mechanical model for a double torsion pendulum

    Full text link
    We present a dynamical model for the double torsion pendulum nicknamed PETER, where one torsion pendulum hangs in cascade, but off-axis, from the other. The dynamics of interest in these devices lies around the torsional resonance, that is at very low frequencies (mHz). However, we find that, in order to properly describe the forced motion of the pendulums, also other modes must be considered, namely swinging and bouncing oscillations of the two suspended masses, that resonate at higher frequencies (Hz). Although the system has obviously 6+6 Degrees of Freedom, we find that 8 are sufficient for an accurate description of the observed motion. This model produces reliable estimates of the response to generic external disturbances and actuating forces or torques. In particular, we compute the effect of seismic floor motion (tilt noise) on the low frequency part of the signal spectra and show that it properly accounts for most of the measured low frequency noise.Comment: 15 pages, 6 figure

    Dark gravitomagnetism with LISA and gravitational waves space detectors

    Get PDF
    We present here the proposal to use the LISA interferometer for detecting the gravito- magnetic field due to the rotation of the Milky Way, including the contribution given by the dark matter halo. The galactic signal would be superposed to the gravitomagnetic field of the Sun. The technique to be used is based on the asymmetric propagation of light along the closed contour of the space interferometer (Sagnac-like approach). Both principle and practical aspects of the proposed experiment are discussed. The strategy for disentangling the sought for signal from the kinematic terms due to proper rotation and orbital motion is based on the time modulation of the time of flight asymmetry. Such modulation will be originated by the annual oscillation of the plane of the interfer- ometer with respect to the galactic plane. Also the effect of the gravitomagnetic field on the polarization of the electromagnetic signals is presented as an in principle detectable phenomenon

    Testing gravitation with satellite laser ranging and the LARASE experiment

    Get PDF
    The International Laser Ranging Service (ILRS) provides range measurements of pas- sive satellites around the Earth through the powerful Satellite Laser Ranging (SLR) technique. These very precise measurements of the distance between an on-ground laser station and a satellite equipped with cube corner retro-reflectors (CCRs) make possible precise tests and measurements in fundamental physics and, in particular, in gravitational physics. The LAGEOS (NASA 1976) and LAGEOS II (NASA/ASI 1992) satellites are outstanding examples of very good test particles because of their very low area-to-mass ratio as well as the high quality of their tracking data and, consequently, of the precise orbit determination (POD) we can obtain after a refined modeling of their orbit. The aim of our research program LARASE (LAser RAnged Satellites Experi- ment) is to go a step further in testing gravitation in the field of Earth by means of the joint analysis of the orbits of the two LAGEOS satellites together with that of the most recently launched LARES (ASI, 2012) satellite. Therefore, our work falls in the so-called weak field and slow motion (WFSM) limit of Einstein’s general relativity (GR) where, in terms of Newtonian physics, relativistic effects appear as two new fields to be added to the classical gravitational field: the gravitoelectric and the gravitomagnetic fields. A fundamental ingredient to reach such a goal is to provide high-quality updated models for the perturbing non-gravitational perturbations (NGP) acting on the surface of these satellites. In fact, regardless of their minimization thanks to a smaller value for the area-to-mass ratio, the subtle and complex to model perturbing effects of the NGP play a crucial role in the POD of the considered satellites, especially in the case of the thermal thrust effects. A large amount of SLR data of LAGEOS and LAGEOS II has been worked out using a set of dedicated models for the satellite dynamics and the related post-fit residuals have been analyzed. A parallel work was performed with LARES, although at a preliminary stage. Our recent work on the orbit modeling and on the data analysis of the orbit of such satellites is presented and discussed

    A 1% Measurement of the gravitomagnetic field of the earth with laser-tracked satellites

    Get PDF
    A new measurement of the gravitomagnetic field of the Earth is presented. The measurement has been obtained through the careful evaluation of the Lense-Thirring (LT) precession on the combined orbits of three passive geodetic satellites, LAGEOS, LAGEOS II, and LARES, tracked by the Satellite Laser Ranging (SLR) technique. This general relativity precession, also known as frame-dragging, is a manifestation of spacetime curvature generated by mass-currents, a peculiarity of Einstein’s theory of gravitation. The measurement stands out, compared to previous measurements in the same context, for its precision (≃7.4×10−3, at a 95% confidence level) and accuracy (≃16×10−3), i.e., for a reliable and robust evaluation of the systematic sources of error due to both gravitational and non-gravitational perturbations. To achieve this measurement, we have largely exploited the results of the GRACE (Gravity Recovery And Climate Experiment) mission in order to significantly improve the description of the Earth’s gravitational field, also modeling its dependence on time. In this way, we strongly reduced the systematic errors due to the uncertainty in the knowledge of the Earth even zonal harmonics and, at the same time, avoided a possible bias of the final result and, consequently, of the precision of the measurement, linked to a non-reliable handling of the unmodeled and mismodeled periodic effects

    Enhanced Lightweight Design : First Results of the FP7 Project ENLIGHT

    Get PDF
    © 2016 The Authors. Published by Elsevier B.V. The European Green Vehicle project ENLIGHT aims to advance highly innovative lightweight material technologies for application in structural vehicle parts of future volume produced Electric Vehicles (EVs) along four axes: performance, manufacturability, cost effectiveness and lifecycle footprint. The main target is to develop viable and sustainable solutions for medium production volume up to 50.000 EVs destined to reach the market in the next 8-12 years. The specific objectives of the ENLIGHT project are on holistic and integrated conceptual design and manufacturing concerning how the technologies and materials addressed can be combined into a representative medium-volume EV. The solutions will be demonstrated in five modules: a front module and central floor module, a front door, a sub-frame and suspension system as well as a cross-car beam. In this paper, a summary of the major results obtained up to the 3rd project year will be presented. ispartof: pages:1031-1040 ispartof: Transportation Research Procedia vol:14 pages:1031-1040 ispartof: 6th Transport Research Arena TRA2016 location:Warsaw, Poland date:18 Apr - 21 Apr 2016 status: publishe

    Optimizing the Earth-LISA "rendez-vous"

    Get PDF
    We present a general survey of heliocentric LISA orbits, hoping it might help in the exercise of rescoping the mission. We try to semi-analytically optimize the orbital parameters in order to minimize the disturbances coming from the Earth-LISA interaction. In a set of numerical simulations we include nonautonomous perturbations and provide an estimate of Doppler shift and breathing as a function of the trailing angle.Comment: 18 pages, 16 figures. Submitted on CQ
    • …
    corecore