4,148 research outputs found

    Sticky Particles and Stochastic Flows

    Full text link
    Gaw\c{e}dzki and Horvai have studied a model for the motion of particles carried in a turbulent fluid and shown that in a limiting regime with low levels of viscosity and molecular diffusivity, pairs of particles exhibit the phenomena of stickiness when they meet. In this paper we characterise the motion of an arbitrary number of particles in a simplified version of their model

    Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    Get PDF
    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described

    Quark mass density- and temperature- dependent model for strange quark matter

    Get PDF
    It is found that the radius of a stable strangelet decreases as the temperature increases in a quark mass density-dependent model. To overcome this difficulty, we extend this model to a quark mass density- and temperature- dependent model in which the vacuum energy density at zero baryon density limit B depends on temperature. An ansatz is introduced and the regions for the best choice of the parameters are studied.Comment: 5 pages, 4 figure

    Ultraviolet television data from the Orbiting Astronomical Observatory. 1: Instrumentation and analysis techniques for the celescope experiment

    Get PDF
    The celescope instrumentation and data analysis system is described, the major problems encountered during orbital operation are summerized, and a few major problems that were anticipated but did not materialize are listed

    Quantum and Boltzmann transport in the quasi-one-dimensional wire with rough edges

    Full text link
    We study quantum transport in Q1D wires made of a 2D conductor of width W and length L>>W. Our aim is to compare an impurity-free wire with rough edges with a smooth wire with impurity disorder. We calculate the electron transmission through the wires by the scattering-matrix method, and we find the Landauer conductance for a large ensemble of disordered wires. We study the impurity-free wire whose edges have a roughness correlation length comparable with the Fermi wave length. The mean resistance and inverse mean conductance 1/ are evaluated in dependence on L. For L -> 0 we observe the quasi-ballistic dependence 1/ = = 1/N_c + \rho_{qb} L/W, where 1/N_c is the fundamental contact resistance and \rho_{qb} is the quasi-ballistic resistivity. As L increases, we observe crossover to the diffusive dependence 1/ = = 1/N^{eff}_c + \rho_{dif} L/W, where \rho_{dif} is the resistivity and 1/N^{eff}_c is the effective contact resistance corresponding to the N^{eff}_c open channels. We find the universal results \rho_{qb}/\rho_{dif} = 0.6N_c and N^{eff}_c = 6 for N_c >> 1. As L exceeds the localization length \xi, the resistance shows onset of localization while the conductance shows the diffusive dependence 1/ = 1/N^{eff}_c + \rho_{dif} L/W up to L = 2\xi and the localization for L > 2\xi only. On the contrary, for the impurity disorder we find a standard diffusive behavior, namely 1/ = = 1/N_c + \rho_{dif} L/W for L < \xi. We also derive the wire conductivity from the semiclassical Boltzmann equation, and we compare the semiclassical electron mean-free path with the mean free path obtained from the quantum resistivity \rho_{dif}. They coincide for the impurity disorder, however, for the edge roughness they strongly differ, i.e., the diffusive transport is not semiclassical. It becomes semiclassical for the edge roughness with large correlation length

    Electron-phonon bound states in graphene in a perpendicular magnetic field

    Full text link
    The spectrum of electron-phonon complexes in a monolayer graphene is investigated in the presence of a perpendicular quantizing magnetic field. Despite the small electron-phonon coupling, usual perturbation theory is inapplicable for calculation of the scattering amplitude near the threshold of the optical phonon emission. Our findings beyond perturbation theory show that the true spectrum near the phonon emission threshold is completely governed by new branches, corresponding to bound states of an electron and an optical phonon with a binding energy of the order of αω0\alpha \omega_{0} where α\alpha is the electron-phonon coupling and ω0\omega_{0} the phonon energy.Comment: To be published in Phys. Rev. Lett., 5 pages, 3 figures, 1 tabl

    Hadronic Parity Violation: a New View through the Looking Glass

    Get PDF
    Studies of the strangeness changing hadronic weak interaction have produced a number of puzzles that have so far evaded a complete explanation within the Standard Model. Their origin may lie either in dynamics peculiar to weak interactions involving strange quarks or in more general aspects of the interplay between strong and weak interactions. In principle, studies of the strangeness conserving hadronic weak interaction using parity violating hadronic and nuclear observables provide a complementary window on this question. However, progress in this direction has been hampered by the lack of a suitable theoretical framework for interpreting hadronic parity violation measurements in a model-independent way. Recent work involving effective field theory ideas has led to the formulation of such a framework while motivating the development of a number of new hadronic parity violation experiments in few-body systems. In this article, we review these recent developments and discuss the prospects and opportunities for further experimental and theoretical progress.Comment: Manuscript submitted to Annual Reviews of Nuclear and Particle Scienc

    High p_T Triggered Delta-eta,Delta-phi Correlations over a Broad Range in Delta-eta

    Full text link
    The first measurement of pseudorapidity (Delta-eta) and azimuthal angle (Delta-phi) correlations between high transverse momentum charged hadrons (p_T > 2.5 GeV/c) and all associated particles is presented at both short- (small Delta-eta) and long-range (large Delta-eta) over a continuous pseudorapidity acceptance (-4<Delta-eta<2). In these proceedings, the various near- and away-side features of the correlation structure are discussed as a function of centrality in Au+Au collisions measured by PHOBOS at sqrt(s_NN)=200 GeV. In particular, this measurement allows a much more complete determination of the longitudinal extent of the ridge structure, first observed by the STAR collaboration over a limited eta range. In central collisions the ridge persists to at least Delta-eta=4, diminishing in magnitude as collisions become more peripheral until it disappears around Npart=80.Comment: 5 pages, 2 figures, presented at the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, "Quark Matter 2008", Jaipur, India, February 4-10, 2008. Full author list included and typo corrected in equation

    Specific Resistance of Pd/Ir Interfaces

    Full text link
    From measurements of the current-perpendicular-to-plane (CPP) total specific resistance (AR = area times resistance) of sputtered Pd/Ir multilayers, we derive the interface specific resistance, 2AR(Pd/Ir) = 1.02 +/- 0.06 fOhmm^2, for this metal pair with closely similar lattice parameters. Assuming a single fcc crystal structure with the average lattice parameter, no-free-parameter calculations, including only spd orbitals, give for perfect interfaces, 2AR(Pd/Ir)(Perf) = 1.21 +/-0.1 fOhmm^2, and for interfaces composed of two monolayers of a random 50%-50% alloy, 2AR(Pd/Ir)(50/50) = 1.22 +/- 0.1 fOhmm^2. Within mutual uncertainties, these values fall just outside the range of the experimental value. Updating to add f-orbitals gives 2AR(Pd/Ir)(Perf) = 1.10 +/- 0.1 fOhmm^2 and 2AR(Pd/Ir)(50-50) = 1.13 +/- 0.1 fOhmm^2, values now compatible with the experimental one. We also update, with f-orbitals, calculations for other pairsComment: 3 pages, 1 figure, in press in Applied Physics Letter

    Analysis of reaction dynamics at RHIC in a combined parton/hadron transport approach

    Get PDF
    We introduce a transport approach which combines partonic and hadronic degrees of freedom on an equal footing and discuss the resulting reaction dynamics. The initial parton dynamics is modeled in the framework of the parton cascade model, hadronization is performed via a cluster hadronization model and configuration space coalescence, and the hadronic phase is described by a microscopic hadronic transport approach. The resulting reaction dynamics indicates a strong influence of hadronic rescattering on the space-time pattern of hadronic freeze-out and on the shape of transverse mass spectra. Freeze-out times and transverse radii increase by factors of 2 - 3 depending on the hadron species.Comment: 10 pages, 4 eps figures include
    • …
    corecore