196 research outputs found

    Balance Functions, Correlations, Charge Fluctuations and Interferometry

    Get PDF
    Connections between charge balance functions, charge fluctuations and correlations are presented. It is shown that charge fluctuations can be directly expressed in terms of a balance functions under certain assumptions. The distortion of charge balance functions due to experimental acceptance is discussed and the effects of identical boson interference is illustrated with a simple model.Comment: 1 eps figure included. 5 pages in revtex

    A Multi-Phase Transport model for nuclear collisions at RHIC

    Get PDF
    To study heavy ion collisions at energies available from the Relativistic Heavy Ion Collider, we have developed a multi-phase transport model that includes both initial partonic and final hadronic interactions. Specifically, the parton cascade model ZPC, which uses as input the parton distribution from the HIJING model, is extended to include the quark-gluon to hadronic matter transition and also final-state hadronic interactions based on the ART model. Predictions of the model for central Au on Au collisions at RHIC are reported.Comment: 7 pages, 4 figure

    Isospin Fluctuations from a Thermally Equilibrated Hadron Gas

    Full text link
    Partition functions, multiplicity distributions, and isospin fluctuations are calculated for canonical ensembles in which additive quantum numbers as well as total isospin are strictly conserved. When properly accounting for Bose-Einstein symmetrization, the multiplicity distributions of neutral pions in a pion gas are significantly broader as compared to the non-degenerate case. Inclusion of resonances compensates for this broadening effect. Recursion relations are derived which allow calculation of exact results with modest computer time.Comment: 10 pages, 5 figure

    Hadronic freeze-out following a first order hadronization phase transition in ultrarelativistic heavy-ion collisions

    Get PDF
    We analyze the hadronic freeze-out in ultra-relativistic heavy ion collisions at RHIC in a transport approach which combines hydrodynamics for the early, dense, deconfined stage of the reaction with a microscopic non-equilibrium model for the later hadronic stage at which the hydrodynamic equilibrium assumptions are not valid. With this ansatz we are able to self-consistently calculate the freeze-out of the system and determine space-time hypersurfaces for individual hadron species. The space-time domains of the freeze-out for several hadron species are found to be actually four-dimensional, and differ drastically for the individual hadrons species. Freeze-out radii distributions are similar in width for most hadron species, even though the Omega-baryon is found to be emitted rather close to the phase boundary and shows the smallest freeze-out radii and times among all baryon species. The total lifetime of the system does not change by more than 10% when going from SPS to RHIC energies.Comment: 11 pages, 4 eps-figures included, revised versio

    Multistrange baryon production in relativistic heavy ion collisions

    Get PDF
    Using a multiphase transport model, we study the production of multistrange baryons from the hadronic matter formed in relativistic heavy ion collisions. The mechanism we introduce is the strangeness-exchange reactions between antikaons and hyperons. We find that these reactions contribute significantly to the production of multistrange baryons in heavy ion collisions at SPS energies, which has been found to be appreciably enhanced. We have also made predictions for multistrange baryon production in heavy ion collisions at RHIC and found a similar enhancement.Comment: 6 pages, RevTex, 8 figs include

    Υ\Upsilon absorption in hadronic matter

    Full text link
    The cross sections of Υ\Upsilon absorption by π\pi and ρ\rho mesons are evaluated in a meson-exchange model. Including form factors with a cutoff parameter of 1 or 2 GeV, we find that due to the large threshold of these reactions the thermal average of their cross sections is only about 0.2 mb at a temperature of 150 MeV. Our results thus suggest that the absorption of directly produced Υ\Upsilon by hadronic comovers in high energy heavy ion collisions is unimportant.Comment: 11 pages, revtex, 3 figures, added references and discussion on higher BBbar state

    The Quark-Gluon Plasma in a Finite Volume

    Full text link
    The statistical mechanics of quarks and gluons are investigated within the context of the canonical ensemble. Recursive techniques are developed which enforce the exact conservation of baryon number, total isospin, electric charge, strangeness, and color. Bose and Fermi-Dirac statistics are also accounted for to all orders. The energy, entropy and particle number densities are shown to be significantly reduced for volumes less than 5 cubic fm.Comment: 8 pages, 3 figure

    Transverse flow and hadro-chemistry in Au+Au collisions at \sqrt{s_{NN}}=200 GeV

    Full text link
    We present a hydrodynamic assessment of preliminary particle spectra observed in Au+Au collisions at \sqrt{s_{NN}}=200 GeV. The hadronic part of the underlying equation of state is based on explicit conservation of (measured) particle ratios throughout the resonance gas stage after chemical freezeout by employing chemical potentials for stable mesons, nucleons and anti-nucleons. We find that under these conditions the data (in particular the proton spectra) favor a low freeze-out temperature of around 100 MeV. Furthermore we show that through inclusion of a moderate pre-hydrodynamic transverse flow field the shape of the spectra improves with respect to the data. The effect of the initial transverse boost on elliptic flow and the freeze-out geometry of the system is also elucidated.Comment: as published: more data included in Fig. 1, discussions throughout the text improved, 6 pages, 4 figure

    Effect of tensor couplings in a relativistic Hartree approach for finite nuclei

    Get PDF
    The relativistic Hartree approach describing the bound states of both nucleons and anti-nucleons in finite nuclei has been extended to include tensor couplings for the ω\omega- and ρ\rho-meson. After readjusting the parameters of the model to the properties of spherical nuclei, the effect of tensor-coupling terms rises the spin-orbit force by a factor of 2, while a large effective nucleon mass m/MN0.8m^{*}/M_{N} \approx 0.8 sustains. The overall nucleon spectra of shell-model states are improved evidently. The predicted anti-nucleon spectra in the vacuum are deepened about 20 -- 30 MeV.Comment: 31 pages, 4 postscript figures include

    Hadronic observables from SIS to SPS energies - anything strange with strangeness ?

    Get PDF
    We calculate p,π±,K±p, \pi^\pm, K^\pm and Λ\Lambda(+Σ0\Sigma^0) rapidity distributions and compare to experimental data from SIS to SPS energies within the UrQMD and HSD transport approaches that are both based on string, quark, diquark (q,qˉ,qq,qˉqˉq, \bar{q}, qq, \bar{q}\bar{q}) and hadronic degrees of freedom. The two transport models do not include any explicit phase transition to a quark-gluon plasma (QGP). It is found that both approaches agree rather well with each other and with the experimental rapidity distributions for protons, Λ\Lambda's, π±\pi^\pm and K±K^\pm. Inspite of this apparent agreement both transport models fail to reproduce the maximum in the excitation function for the ratio K+/π+K^+/\pi^+ found experimentally between 11 and 40 A\cdotGeV. A comparison to the various experimental data shows that this 'failure' is dominantly due to an insufficient description of pion rapidity distributions rather than missing 'strangeness'. The modest differences in the transport model results -- on the other hand -- can be attributed to different implementations of string formation and fragmentation, that are not sufficiently controlled by experimental data for the 'elementary' reactions in vacuum.Comment: 46 pages, including 15 eps figures, to be published in Phys. Rev.
    corecore