248 research outputs found

    Drug transport in brain via the cerebrospinal fluid

    Get PDF
    The human brain has no lymphatic system, but produces over a half-liter each day of cerebrospinal fluid. The cerebrospinal fluid is secreted at the choroid plexus and occupies the cavities of the four ventricles, as well as the cranial and spinal sub-arachnoid space. The cerebrospinal fluid moves over the surfaces of the brain and spinal cord and is rapidly absorbed into the general circulation. The choroid plexus forms the blood-cerebrospinal fluid barrier, and this barrier is functionally distinct from the brain microvascular endothelium, which forms the blood-brain barrier. Virtually all non-cellular substances in blood distribute into cerebrospinal fluid, and drug entry into cerebrospinal fluid is not an index of drug transport across the blood-brain barrier. Drug injected into the cerebrospinal fluid rapidly moves into the blood via bulk flow, but penetrates into brain tissue poorly owing to the limitations of diffusion. Drug transport into cerebrospinal fluid vs. brain interstitial fluid requires knowledge of the relative expression of transporters at the choroid plexus versus the brain microvascular endothelium

    Overfeeding, Autonomic Regulation and Metabolic Consequences

    Get PDF
    The autonomic nervous system plays an important role in the regulation of body processes in health and disease. Overfeeding and obesity (a disproportional increase of the fat mass of the body) are often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The overfeeding-induced changes in autonomic outflow occur with typical symptoms such as adiposity and hyperinsulinemia. There might be a causal relationship between autonomic disturbances and the consequences of overfeeding and obesity. Therefore studies were designed to investigate autonomic functioning in experimentally and genetically hyperphagic rats. Special emphasis was given to the processes that are involved in the regulation of peripheral energy substrate homeostasis. The data revealed that overfeeding is accompanied by increased parasympathetic outflow. Typical indices of vagal activity (such as the cephalic insulin release during food ingestion) were increased in all our rat models for hyperphagia. Overfeeding was also accompanied by increased sympathetic tone, reflected by enhanced baseline plasma norepinephrine (NE) levels in both VMH-lesioned animals and rats rendered obese by hyperalimentation. Plasma levels of NE during exercise were, however, reduced in these two groups of animals. This diminished increase in the exercise-induced NE outflow could be normalized by prior food deprivation. It was concluded from these experiments that overfeeding is associated with increased parasympathetic and sympathetic tone. In models for hyperphagia that display a continuously elevated nutrient intake such as the VMH-lesioned and the overfed rat, this increased sympathetic tone was accompanied by a diminished NE response to exercise. This attenuated outflow of NE was directly related to the size of the fat reserves, indicating that the feedback mechanism from the periphery to the central nervous system is altered in the overfed state.

    Do nasogastric tubes worsen dysphagia in patients with acute stroke?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early feeding via a nasogastric tube (NGT) is recommended as safe way of supplying nutrition in patients with acute dysphagic stroke. However, preliminary evidence suggests that NGTs themselves may interfere with swallowing physiology. In the present study we therefore investigated the impact of NGTs on swallowing function in acute stroke patients.</p> <p>Methods</p> <p>In the first part of the study the incidence and consequences of pharyngeal misplacement of NGTs were examined in 100 stroke patients by fiberoptic endoscopic evaluation of swallowing (FEES). In the second part, the effect of correctly placed NGTs on swallowing function was evaluated by serially examining 25 individual patients with and without a NGT in place.</p> <p>Results</p> <p>A correctly placed NGT did not cause a worsening of stroke-related dysphagia. Except for two cases, in which swallowing material got stuck to the NGT and penetrated into the laryngeal vestibule after the swallow, no changes of the amount of penetration and aspiration were noted with the NGT in place as compared to the no-tube condition. Pharyngeal misplacement of the NGT was identified in 5 of 100 patients. All these patients showed worsening of dysphagia caused by the malpositioned NGT with an increase of pre-, intra-, and postdeglutitive penetration.</p> <p>Conclusion</p> <p>Based on these findings, there are no principle obstacles to start limited and supervised oral feeding in stroke patients with a NGT in place.</p

    Long-term outcome after anterior cervical discectomy without fusion

    Get PDF
    To retrospectively study the long-term outcome of patients after anterior cervical discectomy without fusion (ACD) compared to results published on the long-term outcome after ACD with fusion (ACDF). We reviewed the charts of all patients receiving ACD surgery between 1985 and 2000 to analyze the direct post-operative results as well as complications of the surgery. Moreover, 102 patients, randomly selected, were interviewed with the neck disability index to study possible persisting complaints up to 18Β years after ACD surgery. A total of 551 Patients were identified. Two months post-operative follow up at the outpatient clinic revealed that 90.1% of patients were satisfied with the result of ACD surgery. At the time of the survey, this percentage had dropped to 67.6%. In addition, 20.6% and 11.8% had obtained moderate to severe complaints, respectively, in daily-life activities. Complaints were mainly localized in the neck region and occasionally provoked radiating pain in the arm. On the short term, ACD leads to a satisfied outcome. Over the longer term, patients report increasing complaints. The increase in complaints at the time of the survey may be the result of ongoing degenerative effects. Compared to published data on ACDF, there is no superiority of any fusion technique compared to ACD alone

    Photoperiod Regulates Lean Mass Accretion, but Not Adiposity, in Growing F344 Rats Fed a High Fat Diet

    Get PDF
    yesIn this study the effects of photoperiod and diet, and their interaction, were examined for their effects on growth and body composition in juvenile F344 rats over a 4-week period. On long (16L:8D), relative to short (8L:16D), photoperiod food intake and growth rate were increased, but percentage adiposity remained constant (ca 3-4%). On a high fat diet (HFD), containing 22.8% fat (45% energy as fat), food intake was reduced, but energy intake increased on both photoperiods. This led to a small increase in adiposity (up to 10%) without overt change in body weight. These changes were also reflected in plasma leptin and lipid levels. Importantly while both lean and adipose tissue were strongly regulated by photoperiod on a chow diet, this regulation was lost for adipose, but not lean tissue, on HFD. This implies that a primary effect of photoperiod is the regulation of growth and lean mass accretion. Consistent with this both hypothalamic GHRH gene expression and serum IGF-1 levels were photoperiod dependent. As for other animals and humans, there was evidence of central hyposomatotropism in response to obesity, as GHRH gene expression was suppressed by the HFD. Gene expression of hypothalamic AgRP and CRH, but not NPY nor POMC, accorded with the energy balance status on long and short photoperiod. However, there was a general dissociation between plasma leptin levels and expression of these hypothalamic energy balance genes. Similarly there was no interaction between the HFD and photoperiod at the level of the genes involved in thyroid hormone metabolism (Dio2, Dio3, TSHΞ² or NMU), which are important mediators of the photoperiodic response. These data suggest that photoperiod and HFD influence body weight and body composition through independent mechanisms but in each case the role of the hypothalamic energy balance genes is not predictable based on their known function.Scottish Government (Rural and Environment Science and Analytical Services Division, http://www.scotland.gov.uk/), AWR LR LMT PJM and the BBSRC, (http://www.bbsrc.ac.uk/home/home.aspx, grant BB/K001043/1), AWR GH PJ

    Masked mRNA is stored with aggregated nuclear speckles and its asymmetric redistribution requires a homolog of mago nashi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many rapidly developing systems rely on the regulated translation of stored transcripts for the formation of new proteins essential for morphogenesis. The microspores of the water fern <it>Marsilea vestita </it>dehydrate as they mature. During this process both mRNA and proteins required for subsequent development are stored within the microspores as they become fully desiccated and enter into senescence. At this point microspores become transcriptionally silent and remain so upon rehydration and for the remainder of spermatogenesis. Transcriptional silencing coupled with the translation of preformed RNA makes the microspore of <it>M. vestita </it>a useful system in which to study post-transcriptional regulation of RNA.</p> <p>Results</p> <p>We have characterized the distribution of mRNA as well as several conserved markers of subnuclear bodies within the nuclei of desiccating spores. During this period, nuclear speckles containing RNA were seen to aggregate forming a single large coalescence. We found that aggregated speckles contain several masked mRNA species known to be essential for spermatogenesis. During spermatogenesis masked mRNA and associated speckle proteins were shown to fragment and asymmetrically localize to spermatogenous but not sterile cells. This asymmetric localization was disrupted by RNAi knockdown of the <it>Marsilea </it>homolog of the Exon Junction Complex core component Mago nashi.</p> <p>Conclusions</p> <p>A subset of masked mRNA is stored in association with nuclear speckles during the dormant phase of microspore development in <it>M. vestita</it>. The asymmetric distribution of specific mRNAs to spermatogenous but not sterile cells mirrors their translational activities and appears to require the EJC or EJC components. This suggests a novel role for nuclear speckles in the post-transcriptional regulation of transcripts.</p

    Successful Weight Loss Surgery Improves Eating Control and Energy Metabolism: A Review of the Evidence

    Get PDF
    Eating behavior is determined by a balance of memories in terms of reward and punishment to satisfy the urge to consume food. Refilling empty energy stores and hedonistic motivation are rewarding aspects of eating. Overfeeding, associated adverse GI effects, and obesity implicate punishment. In the current review, evidence is given for the hypothesis that bariatric surgery affects control over eating behavior.Moreover, any caloric overload will reduce the feeling of satiety. Durable weight loss after bariatric surgery is probably the result of a new equilibrium between reward and punishment, together with a better signaling of satiation due to beneficial metabolic changes.We propose to introduce three main treatment goals for bariatric surgery: 1) acceptable weight loss, 2) improvement of eating control, and 3) metabolic benefit. To achieve this goal, loss of 50% to 70% of excess weight will be appropriate (i.e. 30% to 40% loss of initial weight), depending on the degree of obesity prior to operation

    Protein Phosphatase 2A Interacts with the Na+,K+-ATPase and Modulates Its Trafficking by Inhibition of Its Association with Arrestin

    Get PDF
    Background: The P-type ATPase family constitutes a collection of ion pumps that form phosphorylated intermediates during ion transport. One of the best known members of this family is the Na +,K +-ATPase. The catalytic subunit of the Na +,K +-ATPase includes several functional domains that determine its enzymatic and trafficking properties. Methodology/Principal Findings: Using the yeast two-hybrid system we found that protein phosphatase 2A (PP2A) catalytic C-subunit is a specific Na +,K +-ATPase interacting protein. PP-2A C-subunit interacted with the Na +,K +-ATPase, but not with the homologous sequences of the H +,K +-ATPase. We confirmed that the Na +,K +-ATPase interacts with a complex of A- and C-subunits in native rat kidney. Arrestins and G-protein coupled receptor kinases (GRKs) are important regulators of G-protein coupled receptor (GPCR) signaling, and they also regulate Na +,K +-ATPase trafficking through direct association. PP2A inhibits association between the Na +,K +-ATPase and arrestin, and diminishes the effect of arrestin on Na +,K +-ATPase trafficking. GRK phosphorylates the Na +,K +-ATPase and PP2A can at least partially reverse this phosphorylation. Conclusions/Significance: Taken together, these data demonstrate that the sodium pump belongs to a growing list of io
    • …
    corecore