3,134 research outputs found
RVB gauge theory and the Topological degeneracy in the Honeycomb Kitaev model
We relate the Z gauge theory formalism of the Kitaev model to the SU(2)
gauge theory of the resonating valence bond (RVB) physics. Further, we
reformulate a known Jordan-Wigner transformation of Kitaev model on a torus in
a general way that shows that it can be thought of as a Z gauge fixing
procedure. The conserved quantities simplify in terms of the gauge invariant
Jordan-Wigner fermions, enabling us to construct exact eigen states and
calculate physical quantities. We calculate the fermionic spectrum for flux
free sector for different gauge field configurations and show that the ground
state is four-fold degenerate on a torus in thermodynamic limit. Further on a
torus we construct four mutually anti-commuting operators which enable us to
prove that all eigenstates of this model are four fold degenerate in
thermodynamic limit.Comment: 12 pages, 3 figures. Added affiliation and a new section,
'Acknowledgements'.Typos correcte
Photoinduced Floquet topological magnons in Kitaev magnets
We study periodically driven pure Kitaev model and ferromagnetic phase of the
Kitaev-Heisenberg model on the honeycomb lattice by off-resonant linearly and
circularly-polarized lights at zero magnetic field. Using a combination of
linear spin wave and Floquet theories, we show that the effective
time-independent Hamiltonians in the off-resonant regime map onto the
corresponding anisotropic static spin model, plus a tunable photoinduced
magnetic field along the direction, which precipitates Floquet
topological magnons and chiral magnon edge modes. They are tunable by the light
amplitude and polarization. Similarly, we show that the thermal Hall effect
induced by the Berry curvature of the Floquet topological magnons can also be
tuned by the laser field. Our results pave the way for ultrafast manipulation
of topological magnons in irradiated Kitaev magnets, and could play a pivotal
role in the investigation of ultrafast magnon spin current generation in Kitaev
materials.Comment: 7 pages, 5 figures + Supplemental Materia
Exact results for spin dynamics and fractionization in the Kitaev Model
We present certain exact analytical results for dynamical spin correlation
functions in the Kitaev Model. It is the first result of its kind in
non-trivial quantum spin models. The result is also novel: in spite of presence
of gapless propagating Majorana fermion excitations, dynamical two spin
correlation functions are identically zero beyond nearest neighbor separation,
showing existence of a gapless but short range spin liquid. An unusual,
\emph{all energy scale fractionization}of a spin -flip quanta, into two
infinitely massive -fluxes and a dynamical Majorana fermion, is shown to
occur. As the Kitaev Model exemplifies topological quantum computation, our
result presents new insights into qubit dynamics and generation of topological
excitations.Comment: 4 pages, 2 figures. Typose corrected, figure made better, clarifying
statements and references adde
Response of a spaceborne gravitational wave antenna to solar oscillations
We investigate the possibility of observing very small amplitude low
frequency solar oscillations with the proposed laser interferometer space
antenna (LISA). For frequencies below the
dominant contribution is from the near zone time dependent gravitational
quadrupole moments associated with the normal modes of oscillation. For
frequencies above the dominant contribution
is from gravitational radiation generated by the quadrupole oscillations which
is larger than the Newtonian signal by a factor of the order , where is the distance to the Sun, and is the velocity of light.
The low order solar quadrupole pressure and gravity oscillation modes have
not yet been detected above the solar background by helioseismic velocity and
intensity measurements. We show that for frequencies , the signal due to solar oscillations will have a higher
signal to noise ratio in a LISA type space interferometer than in
helioseismology measurements. Our estimates of the amplitudes needed to give a
detectable signal on a LISA type space laser interferometer imply surface
velocity amplitudes on the sun of the order of 1-10 mm/sec in the frequency
range . If such modes exist with
frequencies and amplitudes in this range they could be detected with a LISA
type laser interferometer.Comment: 16 pages, 6 figures, 1 table. A reworked and considerably improved
version of ArXiv:astro-ph/0103472, Published in PR
Strongly Correlated Superconductivity rising from a Pseudo-gap Metal
We solve by Dynamical Mean Field Theory a toy-model which has a phase diagram
strikingly similar to that of high superconductors: a bell-shaped
superconducting region adjacent the Mott insulator and a normal phase that
evolves from a conventional Fermi liquid to a pseudogapped semi-metal as the
Mott transition is approached. Guided by the physics of the impurity model that
is self-consistently solved within Dynamical Mean Field Theory, we introduce an
analytical ansatz to model the dynamical behavior across the various phases
which fits very accurately the numerical data. The ansatz is based on the
assumption that the wave-function renormalization, that is very severe
especially in the pseudogap phase close to the Mott transition, is perfectly
canceled by the vertex corrections in the Cooper pairing channel.A remarkable
outcome is that a superconducting state can develop even from a pseudogapped
normal state, in which there are no low-energy quasiparticles. The overall
physical scenario that emerges, although unraveled in a specific model and in
an infinite-coordination Bethe lattice, can be interpreted in terms of so
general arguments to suggest that it can be realized in other correlated
systems.Comment: 14 pages, 11 figure
Coherent potential approximation, averaged T-matrix approximation and Lloyd's model
It is shown how the single-site coherent potential approximation and the averaged T-matrix approximation become exact in the calculation of the averaged single-particle Green function of the electron in the Anderson model when the site energy is distributed randomly with lorentzian distribution. Using these approximations, Lloyd's exact result is reproduced
Linear Response for Granular Fluids
The linear response of an isolated, homogeneous granular fluid to small
spatial perturbations is studied by methods of non-equilibrium statistical
mechanics. The long wavelength linear hydrodynamic equations are obtained, with
formally exact expressions for the susceptibilities and transport coefficients.
The latter are given in equivalent Einstein-Helfand and Green-Kubo forms. The
context of these results and their contrast with corresponding results for
normal fluids are discussed.Comment: Submitted to PR
Phase structure of an Abelian two-Higgs model and high temperature superconductors
We study the phase structure of a three dimensional Abelian Higgs model with
singly- and doubly-charged scalar fields coupled to a compact Abelian gauge
field. The model is pretending to describe systems of strongly correlated
electrons such as high-Tc superconductivity in overdoped regime and exotic
phases supporting excitations with fractionalized quantum numbers. We identify
the Fermi liquid, the spin gap, the superconductor and the strange metallic
phases in which densities and properties of holon and spinon vortices and
monopoles are explored. The phase diagram in the 3D coupling space is
predicted. We show that at sufficiently strong gauge coupling the spinon-pair
and holon condensation transitions merge together and become, unexpectedly,
first order.Comment: 5 pages, 9 figures, RevTeX
- …
