19 research outputs found

    Inkjet printing of organic transistor devices

    Get PDF
    In the last two decades inkjet printing passed from the field of graphic art and newspaper industry to that of organic and flexible electronics, as a manufacturing tool, becoming a major topic in scientific research. The appeal of this kind of technology is mainly due to its low cost, non-contact and additive approach, which makes it surely the most promising technique over the other technologies of Printed Electronics. The focus of this thesis is the optimization of the printing process, employing a piezo- electric Drop-on-Demand inkjet printer, for the realization of organic transistors on highly flexible plastic substrates, and their development in more complex systems for sensing applications. Indeed, all the devices realized have been investigated by means of electrical measures and spectroscopic techniques, in order to assess their performances and, consequently, to evaluate the reliability of inkjet printing as fabrication technique for such devices. In the first chapter a general introduction to the field of Printed Electronics, with particular focus on inkjet printing technique, is given. The second chapter provides informations concerning the fabrication characterization procedure followed, including a detailed description of the inkjet printing technology used, a report about the main physical and chemical properties of the materials employed, the explanation of the inkjet printing procedure for each material used in this thesis (as the printing parameters optimization and the approach for the resolution of some technical issues); finally also a brief description of the experimental techniques employed in order to characterize the devices is given. The third chapter is fully dedicated to the results concerning the fabrication and the characterization of all-Organic ElectroChemical Transistors (OECTs), while in the fourth chapter the results about inkjet printed Organic Field Effect Transistors (OFETs) are discussed. Finally, a brief chapter reports a summary of the main results achieved

    Direct Detection of 5-MeV Protons by Flexible Organic Thin-Film Devices

    Get PDF
    The direct detection of 5-MeV protons by flexible organic detectors based on thin films is here demonstrated. The organic devices act as a solid-state detector, in which the energy released by the protons within the active layer of the sensor is converted into an electrical current. These sensors can quantitatively and reliably measure the dose of protons impinging on the sensor both in real time and in integration mode. This study shows how to detect and exploit the energy absorbed both by the organic semiconducting layer and by the plastic substrate, allowing to extrapolate information on the present and past irradiation of the detector. The measured sensitivity, S = (5.15 ± 0.13) pC Gy−1, and limit of detection, LOD = (30 ± 6) cGy s−1, of the here proposed detectors assess their efficacy and their potential as proton dosimeters in several fields of application, such as in medical proton therapy

    Medical Applications of Tissue-Equivalent, Organic-Based Flexible Direct X-Ray Detectors

    Get PDF
    The aim of this study is to assess direct X-ray detectors based on organic thin films, fabricated onto flexible plastic substrates, and operating at ultra-low bias (<1 V), for different medical applications. With this purpose, flexible fully organic pixelated X-ray detectors have been tested at the imaging beamline SYRMEP (SYnchrotron Radiation for MEdical Physics) at the Italian synchrotron Elettra, Trieste. The detectors' performance has been assessed for potential employment both as reliable wearable personal dosimeters for patients and as flexible X-ray medical imaging systems. A spatial resolution of 1.4 lp mm−1 with a contrast of 0.37 has been evaluated. Finally, we validate the detector using X-ray doses and energies typically employed for actual medical radiography, and using X-ray beam pulses provided by a commercial dental radiography system, recording a sensitivity of 1.6 × 105 μC Gy−1 cm−3 with a linear response with increasing of the dose rates and a reliable signal to 100 ms X-rays pulses

    Parp1 inhibitor and trabectedin combination does not increase tumor mutational burden in advanced sarcomas—a preclinical and translational study

    Get PDF
    SIMPLE SUMMARY: Immunotherapy has revolutionized cancer treatment, but not for all tumor types. Indeed, sarcomas are considered “immune-cold” tumors, which are relatively unresponsive to immunotherapy. One strategy to potentiate immunotherapy efficacy is to increase tumor immunogenicity, for instance by boosting the number of candidate targets (neoantigens) to be recognized by the immune system. Tumor mutational burden indicates the number of somatic mutations identified in the tumor and normalized per megabase. Tumor mutational burden is considered as an acceptable, measurable surrogate of tumor neoantigens. Here, we explored whether the combination of two DNA-damaging agents, trabectedin and olaparib, could increase tumor mutational burden in sarcomas, to prime subsequent immunotherapy. We found no variation in tumor mutational burden after trabectedin + olaparib in preclinical and clinical samples. Therefore, other aspects should be considered to increase sarcoma immunogenicity, by exploiting different pathways such as the potential modulation of the tumor microenvironment induced by trabectedin + olaparib. ABSTRACT: Drug-induced tumor mutational burden (TMB) may contribute to unleashing the immune response in relatively “immune-cold” tumors, such as sarcomas. We previously showed that PARP1 inhibition perpetuates the DNA damage induced by the chemotherapeutic agent trabectedin in both preclinical models and sarcoma patients. In the present work, we explored acquired genetic changes in DNA repair genes, mutational signatures, and TMB in a translational platform composed of cell lines, xenografts, and tumor samples from patients treated with trabectedin and olaparib combination, compared to cells treated with temozolomide, an alkylating agent that induces hypermutation. Whole-exome and targeted panel sequencing data analyses revealed that three cycles of trabectedin and olaparib combination neither affected the mutational profiles, DNA repair gene status, or copy number alterations, nor increased TMB both in homologous recombinant-defective and proficient cells or in xenografts. Moreover, TMB was not increased in tumor specimens derived from trabectedin- and olaparib-treated patients (5–6 cycles) when compared to pre-treatment biopsies. Conversely, repeated treatments with temozolomide induced a massive TMB increase in the SJSA-1 osteosarcoma model. In conclusion, a trabectedin and olaparib combination did not show mutagenic effects and is unlikely to prime subsequent immune-therapeutic interventions based on TMB increase. On the other hand, these findings are reassuring in the increasing warning of treatment-induced hematologic malignancies correlated to PARP1 inhibitor use

    Tissue Equivalent Curved Organic X-ray Detectors Utilizing High Atomic Number Polythiophene Analogues

    Get PDF
    Organic semiconductors are a promising material candidate for X-ray detection. However, the low atomic number (Z) of organic semiconductors leads to poor X-ray absorption thus restricting their performance. Herein, the authors propose a new strategy for achieving high-sensitivity performance for X-ray detectors based on organic semiconductors modified with high –Z heteroatoms. X-ray detectors are fabricated with p-type organic semiconductors containing selenium heteroatoms (poly(3-hexyl)selenophene (P3HSe)) in blends with an n-type fullerene derivative ([6,6]-Phenyl C71 butyric acid methyl ester (PC70BM). When characterized under 70, 100, 150, and 220 kVp X-ray radiation, these heteroatom-containing detectors displayed a superior performance in terms of sensitivity up to 600 ± 11 nC Gy−1 cm−2 with respect to the bismuth oxide (Bi2O3) nanoparticle (NP) sensitized organic detectors. Despite the lower Z of selenium compared to the NPs typically used, the authors identify a more efficient generation of electron-hole pairs, better charge transfer, and charge transport characteristics in heteroatom-incorporated detectors that result in this breakthrough detector performance. The authors also demonstrate flexible X-ray detectors that can be curved to a radius as low as 2 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard ultra-low dark current of 0.03 ± 0.01 pA mm−2

    Editorial: Organic Electronics: Future Trends in Materials, Fabrication Techniques and Applications

    Get PDF
    With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Morphology and mobility as tools to control and unprecedentedly enhance X-ray sensitivity in organic thin-films

    Get PDF
    Organic semiconductor materials exhibit a great potential for the realization of large-area solution-processed devices able to directly detect high-energy radiation. However, only few works investigated on the mechanism of ionizing radiation detection in this class of materials, so far. In this work we investigate the physical processes behind X-ray photoconversion employing bis-(triisopropylsilylethynyl)-pentacene thin-films deposited by bar-assisted meniscus shearing. The thin film coating speed and the use of bis-(triisopropylsilylethynyl)-pentacene:polystyrene blends are explored as tools to control and enhance the detection capability of the devices, by tuning the thin-film morphology and the carrier mobility. The so-obtained detectors reach a record sensitivity of 1.3 · 104 µC/Gy·cm2, the highest value reported for organic-based direct X-ray detectors and a very low minimum detectable dose rate of 35 µGy/s. Thus, the employment of organic large-area direct detectors for X-ray radiation in real-life applications can be foreseen.I.F., L.B., A.C., and B.F. acknowledge funding from INFN through the CSN5 FIRE project. This work was also funded by the ERC StG 2012-306826 e-GAMES and the DGI (Spain) project FANCY CTQ2016-80030-R. The authors also thank the Generalitat de Catalunya (2017-SGR-918), the Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), and the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centers of Excellence in R&D (SEV-2015-0496). I.T. and A.T. are enrolled in the Materials Science PhD program of Universitat Autònoma de Barcelona and acknowledge FPU fellowship from the Spanish Ministry.Peer reviewe

    Inkjet printed arrays of pressure sensors based on all-organic field effect transistors

    No full text
    In this paper we propose totally flexible organic field effect transistors (OFETs) assembled on plastic films as sensors for mechanical variables. First mechanical sensors for pressure and bending detection are presented. A sharp and reversible sensitivity of the output current of the device to an elastic deformation induced by means of a mechanical stimulus on the device channel has been observed and suggested the idea of employing arrays of such sensors for detecting the deformation applied onto a planar surface. Second the possibility of using similar devices for bio- and chemo-detection is described. By exploiting the properties of the basic structure, the device can be combined with any kind of substrate to detect for instance the pressure applied by people walking or standing on a functionalized carpet. This emerging technology seems to be promising for applications in the field of remote and non invasive monitoring of elderly and disabled people

    Record Stability for Fully Passive Perovskite‐Based X‐Ray Detectors Through the Use of Starch as Templating Agent

    No full text
    Abstract High sensitivity and efficient X‐ray detectors are needed to promote and boost their application as tools in medical diagnostics and radiotherapy. Lead halide perovskites have emerged recently as a novel class of material for efficient X‐ray detection. Although 3D perovskites possess very interesting optoelectronic properties they suffer from low environmental and operational stability. Here a strategy based on using starch as a polymeric template for the fabrication of stable thin film perovskite X‐ray detectors is reported. The proposed p‐i‐n photodiodes can operate with no external bias applied (fully passive devices), reaching a top sensitivity of 5.5 ± 0.2 µC Gy−1 s−1. The device degradation is monitored for samples stored in air for a time window of 630 days, demonstrating exceptional stability: 97% of the initial sensitivity is retained for the best perovskite‐starch composite formulation making it the most stable unencapsulated perovskite X‐ray detector reported so far

    Boosting Direct X‐Ray Detection in Organic Thin Films by Small Molecules Tailoring

    No full text
    The attention focused on the application of organic electronics for the detection of ionizing radiation is rapidly growing among the international scientific community, due to the great potential of organic technology to enable large‐area conformable sensor panels. However, high‐energy photon absorption is challenging as organic materials are constituted of atoms with low atomic numbers. Here it is reported how, by synthesizing new solution‐processable organic molecules derived from 6,13‐bis(triisopropylsilylethynyl)pentacene (TIPS‐pentacene) and 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene, with Ge‐substitution in place of the Si atoms to increase the material atomic number, it is possible to boost the X‐ray detection performance of organic thin films on flexible plastic substrates. Bis(triisopropylgermylethynyl)‐pentacene based flexible organic thin film transistors show high electrical performance with higher mobility (0.4 cm2 V−1 s−1) and enhanced X‐ray sensitivity, up to 9.0 × 105 µC Gy−1 cm−3, with respect to TIPS‐pentacene‐based detectors. Moreover, similar results are obtained for 5,11‐bis(triethylgermylethynyl)anthradithiophene devices, confirming that the proposed strategy, that is, increasing the atomic number of organic molecules by chemical tailoring to improve X‐ray sensitivity, can be generalized to organic thin film detectors, combining high X‐ray absorption, mechanical flexibility, and large‐area processing
    corecore