249 research outputs found

    Antimatter research in Space

    Get PDF
    Two of the most compelling issues facing astrophysics and cosmology today are to understand the nature of the dark matter that pervades the universe and to understand the apparent absence of cosmological antimatter. For both issues, sensitive measurements of cosmic-ray antiprotons and positrons, in a wide energy range, are crucial. Many different mechanisms can contribute to antiprotons and positrons production, ranging from conventional reactions up to exotic processes like neutralino annihilation. The open problems are so fundamental (i.e.: is the universe symmetric in matter and antimatter ?) that experiments in this field will probably be of the greatest interest in the next years. Here we will summarize the present situation, showing the different hypothesis and models and the experimental measurements needed to lead to a more established scenario.Comment: 10 pages, 7 figures, Invited talk at the 18th European Cosmic Ray Symposium, Moscow, July 2002, submitted to Journal of Physics

    On The 5D Extra-Force according to Basini-Capozziello-Leon Formalism and five important features: Kar-Sinha Gravitational Bending of Light, Chung-Freese Superluminal Behaviour, Maartens-Clarkson Black Strings, Experimental measures of Extra Dimensions on board International Space Station(ISS) and the existence of the Particle ZZ due to a Higher Dimensional spacetime

    Full text link
    We use the Conformal Metric as described in Kar-Sinha work on Gravitational Bending of Light in a 5D Spacetime to recompute the equations of the 5D Force in Basini-Capozziello-Leon Formalism and we arrive at a result that possesses some advantages. The equations of the Extra Force as proposed by Leon are now more elegant in Conformal Formalism and many algebraic terms can be simplified or even suppressed. Also we recompute the Kar-Sinha Gravitational Bending of Light affected by the presence of the Extra Dimension and analyze the Superluminal Chung-Freese Features of this Formalism describing the advantages of the Chung-Freese BraneWorld when compared to other Superluminal spacetime metrics(eg:Warp Drive) and we describe why the Extra Dimension is invisible and how the Extra Dimension could be made visible at least in theory.We also examine the Maartens-Clarkson Black Holes in 5D(Black Strings) coupled to massive Kaluza-Klein graviton modes predicted by Extra Dimensions theories and we study experimental detection of Extra Dimensions on-board LIGO and LISA Space Telescopes.We also propose the use of International Space Station(ISS) to measure the additional terms(resulting from the presence of Extra Dimensions) in the Kar-Sinha Gravitational Bending of Light in Outer Space to verify if we really lives in a Higher Dimensional Spacetime.Also we demonstrate that Particle ZZ can only exists if the 5D spacetime exists.Comment: Withdrawn: author no longer wishes to post work on arXi

    Deriving the mass of particles from Extended Theories of Gravity in LHC era

    Full text link
    We derive a geometrical approach to produce the mass of particles that could be suitably tested at LHC. Starting from a 5D unification scheme, we show that all the known interactions could be suitably deduced as an induced symmetry breaking of the non-unitary GL(4)-group of diffeomorphisms. The deformations inducing such a breaking act as vector bosons that, depending on the gravitational mass states, can assume the role of interaction bosons like gluons, electroweak bosons or photon. The further gravitational degrees of freedom, emerging from the reduction mechanism in 4D, eliminate the hierarchy problem since generate a cut-off comparable with electroweak one at TeV scales. In this "economic" scheme, gravity should induce the other interactions in a non-perturbative way.Comment: 30 pages, 1 figur

    Diffractive Interaction and Scaling Violation in pp->pi^0 Interaction and GeV Excess in Galactic Diffuse Gamma-Ray Spectrum of EGRET

    Full text link
    We present here a new calculation of the gamma-ray spectrum from pp->pi^0 in the Galactic ridge environment. The calculation includes the diffractive pp interaction and incorporates the Feynman scaling violation for the first time. Galactic diffuse gamma-rays come, predominantly, from pi^0->gamma gamma in the sub-GeV to multi-GeV range. Hunter et al. found, however, an excess in the GeV range ("GeV Excess") in the EGRET Galactic diffuse spectrum above the prediction based on experimental pp->pi^0 cross-sections and the Feynman scaling hypothesis. We show, in this work, that the diffractive process makes the gamma-ray spectrum harder than the incident proton spectrum by ~0.05 in power-law index, and, that the scaling violation produces 30-80% more pi^0 than the scaling model for incident proton energies above 100GeV. Combination of the two can explain about a half of the "GeV Excess" with the local cosmic proton (power-law index ~2.7). The excess can be fully explained if the proton spectral index in the Galactic ridge is a little harder (~0.2 in power-law index) than the local spectrum. Given also in the paper is that the diffractive process enhances e^+ over e^- and the scaling violation gives 50-100% higher p-bar yield than without the violation, both in the multi-GeV range.Comment: 35 pages, 11 figures, to appear in Astrophysical Journa

    Terahertz electric-field driven dynamical multiferroicity in SrTiO3_3

    Full text link
    The emergence of collective order in matter is among the most fundamental and intriguing phenomena in physics. In recent years, the ultrafast dynamical control and creation of novel ordered states of matter not accessible in thermodynamic equilibrium is receiving much attention. Among those, the theoretical concept of dynamical multiferroicity has been introduced to describe the emergence of magnetization by means of a time-dependent electric polarization in non-ferromagnetic materials. In simple terms, a large amplitude coherent rotating motion of the ions in a crystal induces a magnetic moment along the axis of rotation. However, the experimental verification of this effect is still lacking. Here, we provide evidence of room temperature magnetization in the archetypal paraelectric perovskite SrTiO3_3 due to this mechanism. To achieve it, we resonantly drive the infrared-active soft phonon mode with intense circularly polarized terahertz electric field, and detect a large magneto-optical Kerr effect. A simple model, which includes two coupled nonlinear oscillators whose forces and couplings are derived with ab-initio calculations using self-consistent phonon theory at a finite temperature, reproduces qualitatively our experimental observations on the temporal and frequency domains. A quantitatively correct magnitude of the effect is obtained when one also considers the phonon analogue of the reciprocal of the Einsten - de Haas effect, also called the Barnett effect, where the total angular momentum from the phonon order is transferred to the electronic one. Our findings show a new path for designing ultrafast magnetic switches by means of coherent control of lattice vibrations with light.Comment: Main text: 10 pages, 4 figures, methods and 8 supplemental figure

    Nanoplastics impair in vitro swine granulosa cell functions

    Get PDF
    Soil, water and air pollution by plastic represents an issue of great concern since the particles produced by degradation of plastic materials can be ingested by animals and humans, with still uncertain health consequences. As a contribution on this crucial subject, the present work reports an investigation on the in vitro effects of different concentrations of polystyrene nanoplastics (5, 25 and 75 ÎŒg/mL) on swine granulosa cells, a model of endocrine reproductive cells. In particular, cell growth (BrDU incorporation and ATP production), steroidogenesis (17-ÎČ estradiol and progesterone secretion) and redox status (superoxide and nitric oxide production, enzymatic and non-enzymatic scavenging activity) were studied. Nanoplastics, at the highest concentration, stimulated cell proliferation (P < 0.05), while cell viability resulted unaffected. Steroidogenesis were disrupted (P < 0.05). Both enzymatic and non-enzymatic scavenging activity were increased after exposure at the highest nanoplastic dose (P < 0.05, P < 0.001). Nitric oxide secretion was increased by 25 and 75 ÎŒg/mL (P < 0.05) while superoxide generation was stimulated (P < 0.001) only by the highest concentration tested. Taken together, main features of cultured swine granulosa cells resulted affected by exposure to nanoplastics. These results raise concerns since environment nanoplastic contamination can represents a serious threat to animal and human health

    A calorimeter coupled with a magnetic spectrometer for the detection of primary cosmic antiprotons

    Get PDF
    A tracking calorimeter made of 3200 brass streamer tubes together with 3200 pick-up strips has been built to complement a magnetic spectrometer in order to detect cosmic antiprotons in space. The characteristics of such a calorimeter, the results of a preliminary test of a prototype as well as the properties of the whole apparatus are presented. The apparatus, designed to operate on a balloon at an altitude of about 40 km, can be considered as a second generation detector, capable in principle to solve the problem of the presence of low energy (≀1 Ge V/c) antiprotons in the cosmic rays which is still open because of the disagreement between the existent experimental data

    Magnetic Hyperthermia and Radiation Therapy : Radiobiological Principles and Current Practice

    Get PDF
    Hyperthermia, though by itself generally non-curative for cancer, can significantly increase the efficacy of radiation therapy, as demonstrated by in vitro, in vivo, and clinical results. Its limited use in the clinic is mainly due to various practical implementation difficulties, the most important being how to adequately heat the tumor, especially deep-seated ones. In this work, we first review the effects of hyperthermia on tissue, the limitations of radiation therapy and the radiobiological rationale for combining the two treatment modalities. Subsequently, we review the theory and evidence for magnetic hyperthermia that is based on magnetic nanoparticles, its advantages compared with other methods of hyperthermia, and how it can be used to overcome the problems associated with traditional techniques of hyperthermia

    On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging

    Get PDF
    The identification of alternative biocompatible magnetic NPs for advanced clinical application is becoming an important need due to raising concerns about iron accumulation in soft issues associated to the administration of superparamagnetic iron oxide nanoparticles (NPs). Here, we report on the performance of previously synthetized iron-doped hydroxyapatite (FeHA) NPs as contrast agent for magnetic resonance imaging (MRI). The MRI contrast abilities of FeHA and EndoremÂź (dextran coated iron oxide NPs) were assessed by 1H nuclear magnetic resonance relaxometry and their performance in healthy mice was monitored by a 7 Tesla scanner. FeHA applied a higher contrast enhancement, and had a longer endurance in the liver with respect to EndoremÂź at iron equality. Additionally, a proof of concept of FeHA use as scintigraphy imaging agent for positron emission tomography (PET) and single photon emission computed tomography (SPECT) was given labeling FeHA with 99mTc-MDP by a straightforward surface functionalization process. Scintigraphy/x-ray fused imaging and ex vivo studies confirmed its dominant accumulation in the liver, and secondarily in other organs of the mononuclear phagocyte system. FeHA efficiency as MRI-T2 and PET-SPECT imaging agent combined to its already reported intrinsic biocompatibility qualifies it as a promising material for innovative nanomedical applications. STATEMENT OF SIGNIFICANCE: The ability of iron-doped hydroxyapatite nanoaprticles (FeHA) to work in vivo as imaging agents for magnetic resonance (MR) and nuclear imaging is demonstrated. FeHA applied an higher MR contrast in the liver, spleen and kidneys of mice with respect to EndoremÂź. The successful radiolabeling of FeHA allowed for scintigraphy/X-ray and ex vivo biodistribution studies, confirming MR results and envisioning FeHA application for dual-imaging

    Study of the granularity for a tracking calorimeter with optimal rejection of proton background in positron detection

    Get PDF
    In this paper we present a Monte Carlo study of a calorimeter response for an experiment to equip the magnetic facility of the USA space station. Main purpose in the design of such a calorimeter is the efficient discrimination between eloctromagnetic and hadronic showers. The estimated rejection power results to be better than 1·10−3 p/e+ for incident particles with energy between 10 GeV and 100GeV
    • 

    corecore