67 research outputs found

    fluid dynamic interaction between train and noise barriers on high speed lines

    Get PDF
    Abstract Noise barriers are lineside structures next to the railway track, subject to vibrations due to fluid-dynamic excitation induced by the train passage in High-Speed-Lines (HSLs). The train, travelling along the railway track, is immersed in a fluid, which increases its resistance as the speed of the train increases; the generated pressure field, with sinusoidal trend, is orthogonal to the barrier and excites its dynamic response, testing strength and fatigue resistance. This phenomenon becomes particularly significant for the HSLs trains, travelling at 300 kph speed, and should be evaluated to ensure the transport safety. The aim of the study is to focus on the dynamic response of existing noise barriers, with special regard to fatigue aspects, and proposes the introduction of special devices, Tuned-Mass-Dampers (TMDs), to place on the top of each column in order to reduce structural vibrations. The noise barrier is modeled as a generalized single-degree-of-freedom (SDOF) system. The pressure field induced by the train passage is modeled by a dynamic action function of the barrier height and geometry, of the railway geometry and the train speed. Two case studies are illustrated with columns 4 and 5 m high and concrete noise panels. The design of the auxiliary system, the TMD, is carried out as first tentative solution for reducing the structural vibrations and dynamic analysis on the barriers with and without the TMD shows the effectiveness of the control system to reduce the amplitude of motion and the number of cycles of vibration

    Clean room Norme interne OAS Bologna

    Get PDF
    Il presente documento è stato elaborato da parte dei Responsabili della camera bianca ed elenca le regole di buona pratica nella disciplina e nel vestiario congrue al laboratorio secondo le indicazioni ISO nel contesto dell’infrastruttura Camera Pulita ubicata al IV piano dell’edificio OAS-Bologna all’interno dell’area CNR

    Twin shaping filter technique for signals compensation in CZT detectors grown by the vertical bridgman method

    Get PDF
    CdTe/CdZnTe is a consolidated material to realize detectors for a large variety of applications, such as medical, industrial, and space research. An Italian collaboration, involving the CNR/IMEM and INAF/IASF institutes, was born some years ago with the aim to develop a national capability to produce CZT detectors starting from the material growth to the final detection device. Some important features of these detectors (pulse height, energy resolution, photopeak efficiency) are affected by the charge collection efficiency: the low mobility of the charge carriers (particularly the holes) and trapping/detrapping phenomena can degrade the CdTe/CZT detectors response, depending on the distance between the charge formation position and the collecting electrodes. Several efforts have been made to improve the detection efficiency as well as the energy resolution, using both the optimization of the electrode geometry (drift strip technique, coplanar-grid, small pixel effect) and pulse height compensation methods to overcome the hole trapping problem. We have studied a bi-parametric method that uses a twin pulse shaping active filter to analyze the same signal: one slow, which is proportional to the energy of the photon, and one fast, which depends on the position of the interaction with respect to the collecting electrode. The experimental results obtained with the application of this bi-parametric technique on planar CZT detectors of good quality grown by the Vertical Bridgman method at CNR/IMEM are presented as a function of the bias voltage, photon energy and shaping time pairs

    iALMA Cryofacility Dry Run Report

    Get PDF
    The iALMA Cryofacility consist of a 2x1 squared meters surface chamber that will permit to test the ALMA band 2+3 cartridge at operational conditions. The Cryofacility is setup at the CryoWaves Lab at INAF/IASF-Bologna

    Signal compensation in CZT detectors grown by the Vertical Bridgman method using a twin-shaping filter technique

    Get PDF
    CdTe/CZT is now a material consolidated for the detectors realization operating at room temperature, which find a large variety of applications in astrophysics, medical imaging and security. An Italian collaboration, involving the CNR/IMEM and INAF/IASF institutes, was born several years ago with the aim to develop a national capability to produce CZT detectors starting from the material growth to the final detection device. The collection efficiency of the charge carriers affects some important features of these detectors, such as the pulse height, energy resolution, photopeak efficiency. In fact the low mobility of the charge carriers (particularly the holes) and trapping/detrapping phenomena can degrade the CdTe/CZT detector response, depending on the distance between the charge formation position and the collecting electrodes. Two kinds of techniques can be used to improve both the collection efficiency and the energy resolution, based on the optimization of the electrode geometry and/or signal compensation methods. We have implemented a biparametric method that uses a twin pulse shaping active filter to analyze the same signal from the detector: one “slow”, which is proportional to the energy of the incident photon, and one “fast”, which depends on the position of the interaction with respect to the collecting electrode. We present this biparametric technique applied on planar CZT detectors grown by the Vertical Bridgman method at CNR/IMEM (Parma), the experimental results obtained as a function of the bias voltage, photon energy, shaping time pairs and the compensated spectra

    Sustainable access to data, products, services and software from the European seismological Research Infrastructures: the EPOS TCS Seismology

    Get PDF
    Easy, efficient and comprehensive access to data, data products, scientific services and scientific software is a key ingredient in enabling research at the frontiers of science. Organizing this access across the European Research Infrastructures in the field of seismology, so that it best serves user needs, takes advantage of state-of-the-art ICT solutions, provides cross-domain interoperability, and is organizationally and financially sustainable in the long term, is the core challenge of the implementation phase of the Thematic Core Service (TCS) Seismology within the EPOS-IP project. Building upon the existing European-level infrastructures ORFEUS for seismological waveforms, EMSC for seismological products, and EFEHR for seismological hazard and risk information, and implementing a pilot Computational Earth Science service starting from the results of the VERCE project, the work within the EPOS-IP project focuses on improving and extending the existing services, aligning them with global developments, to at the end produce a well coordinated framework that is technically, organizationally, and financially integrated with the EPOS architecture. This framework needs to respect the roles and responsibilities of the underlying national research infrastructures that are the data owners and main providers of data and products, and allow for active input and feedback from the (scientific) user community. At the same time, it needs to remain flexible enough to cope with unavoidable challenges in the availability of resources and dynamics of contributors. The technical work during the next years is organized in four areas: - constructing the next generation software architecture for the European Integrated (waveform) Data Archive EIDA, developing advanced metadata and station information services, fully integrate strong motion waveforms and derived parametric engineering-domain data, and advancing the integration of mobile (temporary) networks and OBS deployments in EIDA; - further development and expansion of services to access seismological products of scientific interest as provided by the community by implementing a common collection and development (IT) platform, improvements in the earthquake information services e.g. by introducing more robust quality indicators and diversifying collection and dissemination mechanisms, as well as improving historical earthquake data services; - development of a comprehensive suite of earthquake hazard products, tools, and services harmonized on the European level and available through a common access platform, encompassing information on seismic sources, seismogenic faults, ground-motion prediction equations, geotechnical information, and strong-motion recordings in buildings, together with an interface to earthquake risk; - a portal implementation of computational seismology tools and services, specifically for seismic wave- form propagation in complex 3D media following the results of the VERCE project, and initiating the inclusion of further suitable codes on that portal in discussion with the community, forming the basis of EPOS computational earth science infrastructure. This will be accompanied by development and implementation of integrated and interoperable metadata structures, adequate and referencable persistent identifiers, and appropriate user access and authorization mecha- nisms. Here we present further detail on the work plan with the attempt to foster interaction with the target user community on the spectrum of services as well as on feedback mechanisms and governance.H2020 Project EPOS-IP, Cordis Project ID 676564PublishedVienna, Austria4T. Sismologia, geofisica e geologia per l'ingegneria sismica4IT. Banche dat

    Twin-Shaping Filter Technique Applied to CZT Detectors

    Get PDF
    CdTe/CdZnTe is an attractive and consolidated material with which to realize detectors with good efficiency and energy resolution, operating at room temperature for a large variety of applications such as astrophysics, medical imaging and security. However, this type of material suffers from the low mobility of the charge carriers (particularly the holes), which are trapped and so degrade the detector response in terms of charge collection efficiency, energy resolution and photopeak efficiency. The response of a planar CdTe/CdZnTe detector, which depends on the distance between the charge formation position and the collecting electrodes, can be improved by using two kinds of techniques, based on the optimization of the electrode geometry and/or signal compensation methods. We are studying the feasibility and the reliability of a biparametric method that uses a twin pulse shaping active filter to analyze each signal from the detector twice: one “Slow”, which is proportional to the energy of the incident photon, and one “Fast”, which depends on the position of the interaction with respect to the collecting electrode. In this paper we describe the bi-parametric technique applied to planar CdZnTe detectors grown by CNR/IMEM and to Spectrometer Grade detectors. We report the experimental results in terms of energy resolution, peak-to valley ratio and photopeak efficiency, as well as the compensated spectra obtained as a function of the bias voltage, photon energy and shaping time pairs. We also report the results obtained by using a CdZnTe drift strip detector. Furthermore, this technique could be implemented in an array of detectors, whose front-end electronics is composed of ASICs, where the shaping time can be selected for each channel, like the RENA-3 IC (NOVA R&D)

    EPOS Seismology services and their users

    Get PDF
    The construction of seismological community services for the European Plate Observing System Research Infrastructure (EPOS) is by now well under way. A significant number of services are already operational, largely based on those existing at established institutions or collaborations like ORFEUS, EMSC, AHEAD and EFEHR, and more are being added to be ready for internal validation by late 2017. In this presentation we focus on a number of issues related to the interaction of the community of users with the services provided by the seismological part of the EPOS research infrastructure. How users interact with a service (and how satisfied they are with this interaction) is viewed as one important component of the validation of a service within EPOS, and certainly is key to the uptake of a service and from that also it’s attributed value. Within EPOS Seismology, the following aspects of user interaction have already surfaced: a) User identification (and potential tracking) versus ease-of-access and openness Requesting users to identify themselves when accessing a service provides various advantages to providers and users (e.g. quantifying & qualifying the service use, customization of services and interfaces, handling access rights and quotas), but may impact the ease of access and also shy away users who don’t wish to be identified for whatever reason. b) Service availability versus cost There is a clear and prominent connection between the availability of a service, both regarding uptime and capacity, and its operational cost (IT systems and personnel), and it is often not clear where to draw the line (and based on which considerations). In connection to that, how to best utilize third-party IT infrastructures (either commercial or public), and what the long-term cost implications of that might be, is equally open. c) Licensing and attribution The issue of intellectual property and associated licensing policies for data, products and services is only recently gaining more attention in the community. Whether at all, and if yes then how to license, is still diversely discussed, while on national level more and more legislative requirements create boundary conditions that need to be respected. Attribution (of service use and of data/product origin) is only one related aspect, but of high importance the scientific world. In EPOS Seismology we attempt to find common approaches to address the above issues, also closely co-ordinated to the developments across the other EPOS domains. In this presentation we discuss the current strategies, potential solutions identified, and remaining open questions.H2020 Project EPOS-IP, Cordis Project ID 676564PublishedVienna, Austria4T. Sismologia, geofisica e geologia per l'ingegneria sismica4IT. Banche dat

    Focussing crystals for use in broad band hard X/soft gamma-ray Laue lenses

    Get PDF
    Hard X-/soft gamma-ray astronomy is a crucial window for the study of the most energetic and violent events in the Universe. To fulfil the scientific requirements in this regime, a new generation of telescopes with a broad operational band extending from tens up to several hundreds of keV and exploiting unprecedented sensitivity (50-100 times better that current instruments) is required. We report on diffractive bent crystals made of Gallium Arsenide (GaAs) that are suitable for the construction of high sensitivity X-/gamma-ray Laue lens space telescopes. Laue lenses, made of sets of diffractive crystals working in transmission, offer one possibility, albeit technically challenging, to build a new generation of focusing telescopes that can extend the energy band far beyond the 80 keV limit for current multilayer concentrators. In particular, we present the results obtained from the characterization of crystals that will be used to realise a broad band Laue demonstrator. They have been studied in terms of focusing capability and diffraction efficiency by using a flat X-ray panel imager and an HPGe spectrometer as focal plane detectors. The GaAs tiles, bent via a surface lapping procedure, have been developed at the IMEM/CNR in Parma (Italy) in the framework of the LAUE project funded by the Italian Space Agency. The main goal of the project was to build a broad band Laue lens demonstrator for hard X-/soft gamma-rays (80-300 keV

    High performance 3D CZT spectro-imager for BNCT-SPECT: preliminary characterization

    Get PDF
    The National Institute of Nuclear Physics (INFN) is supporting the 3CaTS project with the aim of developing a new Single Photon Emission Computed Tomography (SPECT) system for real time 10 B therapeutic dose monitoring in the binary experimental hadron therapy called Boron Neutron Capture Therapy (BNCT). BNCT is a highly selective tumour treatment based on the neutron capture reaction 10 B(n,α) 7 Li. The secondary particles have a high LET with ranges in tissues of the order of 10 μm (thus less than the mean cell diameter of few tens μm). Targeting the 10 B delivery towards cancer, the released energy lethally damages only the malignant cells sparing the normal tissues, thus enabling a cell-level selective treatment. To properly exploit this selectivity it is mandatory to know the 10 B spatial distribution inside patients body during neutron irradiation. This can be achieved by detecting the 478 keV γ ray emitted in the 94% of 10 B capture reactions by a SPECT system. A 3D CZT drift strip detector with a sensitive volume of 20x20x5 mm 3 was developed, able to perform high-resolution X-ray and γ ray spectroscopic imaging (10-1000 keV). The detector signals are analysed by a custom digital multi-channel electronics, based on two pipelined fast and slow analysis, able to perform multi-parameter analysis and fine temporal coincidences (<; 20 ns). Energy resolution of 3.3% (4 keV) and 2% (13 keV) FWHM was measured, with uncollimated sources and no corrections, at 122 keV and 662 keV, respectively
    • …
    corecore