501 research outputs found

    Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species

    Get PDF
    The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments

    Inhibition of inducible Nitric Oxide Synthase expression by an acetonic extract from Feijoa sellowiana Berg. fruits.

    Get PDF
    Feijoa sellowiana Berg. fruits and especially the acetonic extract have been shown to possess biological activities, although the responsible compounds have never been identified. The present study was designed to evaluate the anti-inflammatory activity of an acetonic extract from F. sellowiana Berg. fruits on the nitric oxide (NO) pathway, which plays an important role in inflammation. To this aim the J774 cell line, which expresses inducible nitric oxide synthase (iNOS) following stimulation with lipopolysaccharide (LPS), has been utilized, and the effects of this extract and its fractions on NO production, iNOS protein expression, and signal pathways involved in its regulation have been evaluated. This study demonstrates that at least some part of the anti-inflammatory activity of the acetonic extract is due to the suppression of NO production by flavone and stearic acid. The mechanism of this inhibition seems to be related to an action on the expression of the enzyme iNOS through the attenuation of nuclear factor κB (NF-κB) and/or mitogen-activated protein kinase (MAPK) activation

    Effects of triacontanol on ascorbate-glutathione cycle in Brassica napus L. exposed to cadmium-induced oxidative stress.

    Get PDF
    The ability of exogenous triacontanol (TRIA), a plant growth regulator, to reduce Cd toxicity was studied in canola (Brassica napus L.) plants. The following biological parameters were examined in canola seedlings to investigate TRIA-induced tolerance to Cd toxicity: seedling growth, chlorophyll damage and antioxidant response. In particular, TRIA application reduced Cd-induced oxidative damage, as shown by reduction of ROS content, lipoxygenase (LOX) activity and lipid peroxidation level. TRIA pretreatment increased non-enzymatic antioxidant contents (ascorbate, AsA, glutathione and GSH), phytochelatin content (PCs) and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), monodehydroascorbate reductase (MDHAR), dehydro ascorbate reductase (DHAR), and glutathione reductase (GR), so reducing the oxidative stress. These results clearly indicate the protective ability of TRIA to modulate the redox status through the antioxidant pathway AGC and GSH, so reducing Cd-induced oxidative stress

    Chemical Composition and Biological Activities of Prangos ferulacea Essential Oils

    Get PDF
    Prangos ferulacea (L.) Lindl, which belongs to the Apiaceae family, is a species that mainly grows in the eastern Mediterranean region and in western Asia. It has been largely used in traditional medicine in several countries and it has been shown to possess several interesting biological properties. With the aim to provide new insights into the phytochemistry and pharmacology of this species, the essential oils of flowers and leaves from a local accession that grows in Sicily (Italy) and has not yet been previously studied were investigated. The chemical composition of both oils, obtained by hydrodistillation from the leaves and flowers, was evaluated by GC-MS. This analysis allowed us to identify a new chemotype, characterized by a large amount of (Z)-beta-ocimene. Furthermore, these essential oils have been tested for their possible antimicrobial and antioxidant activity. P. ferulacea essential oils exhibit moderate antimicrobial activity; in particular, the flower essential oil is harmful at low and wide spectrum concentrations. They also exhibit good antioxidant activity in vitro and in particular, it has been shown that the essential oils of the flowers and leaves of P. ferulacea caused a decrease in ROS and an increase in the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) in OZ-stimulated PMNs. Therefore, these essential oils could be considered as promising candidates for pharmaceutical and nutraceutical preparations

    Interaction of triacontanol and arsenic on the ascorbate-glutathione cycle and their effects on the ultrastructure in Coriandrum sativum L.

    Get PDF
    Exogenous application of triacontanol (TRIA) has the ability to mitigate the adverse effects of abiotic stresses by modulating a number of physio-biochemical processes in different plants. However, information about how its effects may be mediated under heavy metal stress is scanty. In this study, we evaluated how TRIA exerted its role against the toxicity of sodium arsenate in coriander (Coriandrum sativum L.). The activities of enzymes, including ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione-S-transferase (GST), were measured. In addition, the contents of ascorbate (ASC), dehydroascorbate (DHA), reduced glutathione (GSH) and some elements including both As and the nutrients Ca, Mg, Zn, K, P were determined. Results suggested that As decreased GSH, ASA and DHA contents, a clear indication of oxidative stress, but their amounts were raised by TRIA treatment. Also, As stress decreased plant Ca, Zn, K, Mg and P contents, while TRIA improved their uptake and inhibited As accumulation. As 200 μM treatment inhibited the activities of APX, MDHAR, DHAR, and GR, enzymes of the ascorbate-glutathione cycle (AGC). TRIA supplementation restored and even enhanced the activity of all the AGC enzymes. 10 μM TRIA treatment increased GST gene expression and activity to a greater extent than under only As treatment. TRIA-alone treatments did not change the mentioned parameters. Transmission electron microscopy (TEM) observations showed that TRIA was able to protect cells, and most of all chloroplasts, from As-induced damage. These results clearly indicate the protective role of TRIA in modulating the redox status of the plant system through the antioxidant AGC and GSH enzymes, which could counteract arsenic-induced oxidative stress

    Protamine-like proteins have bactericidal activity. The first evidence in Mytilus galloprovincialis.

    Get PDF
    The major acid-soluble protein components of the mussel Mytilus galloprovincialis sperm chromatin consist of the protamine-like proteins PL-II, PL-III and PL-IV, an intermediate group of sperm nuclear basic proteins between histones and protamines. The aim of this study was to investigate the bactericidal activity of these proteins since, to date, there are reports on bactericidal activity of protamines and histones, but not on protamine-like proteins. We tested the bactericidal activity of these proteins against Gram-positive bacteria: Enterococcus faecalis and two different strains of Staphylococcus aureus, as well as Gram-negative bacteria: Proteus mirabilis, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhmurium, Enterobacter aerogenes, Enterobacter cloacae, and Escherichia coli. Clinical isolates of the same bacterial species were also used to compare their sensitivity to these proteins. The results show that Mytilus galloprovincialis protamine-like proteins exhibited bactericidal activity against all bacterial strains tested with different minimum bactericidal concentration values, ranging from 15.7 to 250 µg/mL. Furthermore, these proteins were active against some bacterial strains tested that are resistant to conventional antibiotics. These proteins showed very low toxicity as judged by red blood cell lysis and viability MTT assays and seem to act both at the membrane level and within the bacterial cell. We also tested the bactericidal activity of the product obtained from an in vitro model of gastrointestinal digestion of protamine-like proteins on a Gram-positive and a Gram-negative strain, and obtained the same results with respect to undigested protamine-like proteins on the Gram-positive bacterium. These results provide the first evidence of bactericidal activity of protamine-like-proteins

    Profile of academic entrepreneurship in Brazil: Evidence from the evaluation of former holders of undergraduate research, master and PhD scholarships

    Get PDF
    Purpose – This paper aims to understand, in the state of São Paulo academic environment, the differences between the profiles of academic entrepreneurs, nonacademic entrepreneurs and non-entrepreneurs. Design/methodology/approach – The authors collected data from a more comprehensive research, whose objective was to evaluate the scholarship programmes of São Paulo Research Foundation (FAPESP). For data collection, the authors used an online questionnaire, pre-filled with information from the Lattes Curriculum of the sample individuals, as well as information obtained from FAPESP and from coordination for the improvement of higher education personnel. The response rate of the questionnaires was 21 per cent. The authors sought to explore the variables regarding entrepreneurial activities carried out by former scholarship holders, by relating them to other key variables identified in the literature review and explained in the hypotheses. Findings – The results indicate that entrepreneurship rates decrease with the higher academic level of the researcher; in general, academic entrepreneurs come from families with a good financial situation, and applied sciences are the areas of knowledge with more entrepreneurs. Originality/value – Despite the great number of theoretical and empirical studies found in the literature on entrepreneurship and academic entrepreneurship, there is still a shortage of practical studies on this latter topic in Brazil. This gap is even more evident when the authors consider the significant growth of entrepreneurial activity in the country in the past years. This paper contributes to fill this gap, and it aims to understand, in the state of São Paulo academic environment, the differences between the profiles of academic entrepreneurs, nonacademic entrepreneurs and non-entrepreneurs

    Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration

    Get PDF
    In the present work, microporous membranes based on poly(ε-caprolactone) (PCL) and PCL functionalized with amine (PCL-DMAEA) or anhydride groups (PCL-MAGMA) were realized by solvent-non solvent phase inversion and proposed for use in Guided Tissue Regeneration (GTR). Nanowhiskers of hydroxyapatite (HA) were also incorporated in the polymer matrix to realize nanocomposite membranes. Scanning Electron Microscopy (SEM) showed improved interfacial adhesion with HA for functionalized polymers, and highlighted substantial differences in the porosity. A relationship between the developed porous structure of the membrane and the chemical nature of grafted groups was proposed. Compared to virgin PCL, hydrophilicity increases for functionalized PCL, while the addition of HA influences significantly the hydrophilic characteristics only in the case of virgin polymer. A significant increase of in vitro degradation rate was found for PCL-MAGMA based membranes, and at lower extent of PCL-DMAEA membranes. The novel materials were investigated regarding their potential as support for cell growth in bone repair using multipotent mesenchymal stromal cells (MSC) as a model. MSC plated onto the various membranes were analyzed in terms of adhesion, proliferation and osteogenic capacity that resulted to be related to chemical as well as porous structure. In particular, PCL-DMAEA and the relative nanocomposite membranes are the most promising in terms of cell-biomaterial interactions
    • …
    corecore