3,114 research outputs found
Synthesis and characterization of silver nanoarticles from extract of Eucalyptus citriodora
The primary motivation for the study to develop simple eco-friendly green synthesis of silver nanoparticles using leaf extract of Eucalyptus citriodora as reducing and capping agent. The green synthesis process was quite fast and silver nanoparticles were formed within 0.5 h. The synthesis of the particles was observed by UV-visible spectroscopy by noting increase in absorbance. Characterization of the particles was carried out by X-ray diffraction, FTIR and electron microscopy. The developed nanoparticles demonstrated that E. citriodora is good source of reducing agents. UV-visible absorption spectra of the reaction medium containing silver nanoparticles showed maximum absorbance at 460 nm. FTIR analysis confirmed reduction of Ag+ to Ag0 atom in silver nanoparticles. The XRD pattern revealed the crystalline structure of silver nanoparticles. The SEM analysis showed the size and shape of the nanoparticles. The method being green, fast, easy and cost effective can be recommended for large scale production of AgNPs for their use in food, medicine and materials
Chiral symmetry breaking in dimensionally regularized nonperturbative quenched QED
In this paper we study dynamical chiral symmetry breaking in dimensionally
regularized quenched QED within the context of Dyson-Schwinger equations. In D
< 4 dimensions the theory has solutions which exhibit chiral symmetry breaking
for all values of the coupling. To begin with, we study this phenomenon both
numerically and, with some approximations, analytically within the rainbow
approximation in the Landau gauge. In particular, we discuss how to extract the
critical coupling alpha_c = pi/3 relevant in four dimensions from the D
dimensional theory. We further present analytic results for the chirally
symmetric solution obtained with the Curtis-Pennington vertex as well as
numerical results for solutions exhibiting chiral symmetry breaking. For these
we demonstrate that, using dimensional regularization, the extraction of the
critical coupling relevant for this vertex is feasible. Initial results for
this critical coupling are in agreement with cut-off based work within the
currently achievable numerical precision.Comment: 24 pages, including 5 figures; submitted to Phys. Rev.
Three point SUSY Ward identities without Ghosts
We utilise a non-local gauge transform which renders the entire action of
SUSY QED invariant and respects the SUSY algebra modulo the gauge-fixing
condition, to derive two- and three-point ghost-free SUSY Ward identities in
SUSY QED. We use the cluster decomposition principle to find the Green's
function Ward identities and then takes linear combinations of the latter to
derive identities for the proper functions.Comment: 20 pages, no figures, typos correcte
Heavy- to light-meson transition form factors
Semileptonic heavy -> heavy and heavy -> light meson transitions are studied
as a phenomenological application of a heavy-quark limit of Dyson-Schwinger
equations. Employing two parameters: E, the difference between the mass of the
heavy meson and the effective-mass of the heavy quark; and Lambda, the width of
the heavy-meson Bethe-Salpeter amplitude, we calculate f_+(t) for all decays on
their entire kinematically accessible t-domain. Our study favours f_B in the
range 0.135-0.17 GeV and with E=0.44 GeV and 1/Lambda = 0.14 fm we obtain
f_+^{B pi}(0) = 0.46. As a result of neglecting 1/m_c-corrections, we estimate
that our calculated values of \rho^2 = 0.87 and f_+^{DK}(0)=0.62 are too low by
approximately 15%. However, the bulk of these corrections should cancel in our
calculated values of Br(D -> \pi l nu)/Br(D -> K l nu)=0.13 and f_+^{D
pi}(0)/f_+^{DK}(0) = 1.16.Comment: 26 pages, 3 figures, REVTE
ONE LOOP QED VERTEX IN ANY COVARIANT GAUGE: ITS COMPLETE ANALYTIC FORM
The one loop vertex in QED is calculated in arbitrary covariant gauges as an
analytic function of its momenta. The vertex is decomposed into a longitudinal
part, that is fully responsible for ensuring the Ward and Ward-Takahashi
identities are satisfied, and a transverse part. The transverse part is
decomposed into 8 independent components each being separately free of
kinematic singularities in covariant gauge in a basis that modifies
that proposed by Ball and Chiu. Analytic expressions for all 11 components of
the vertex are given explicitly in terms of elementary functions
and one Spence function. These results greatly simplify in particular kinematic
regimes.Comment: 35 pages, latex, 2 figures, Complete postscript file available from:
ftp://cpt1.dur.ac.uk/pub/preprints/dtp95/dtp9506/dtp9406.p
Mean field exponents and small quark masses
We demonstrate that the restoration of chiral symmetry at finite-T in a class
of confining Dyson-Schwinger equation (DSE) models of QCD is a mean field
transition, and that an accurate determination of the critical exponents using
the chiral and thermal susceptibilities requires very small values of the
current-quark mass: log_{10}(m/m_u) < -5. Other classes of DSE models
characterised by qualitatively different interactions also exhibit a mean field
transition. Incipient in this observation is the suggestion that mean field
exponents are a result of the gap equation's fermion substructure and not of
the interaction.Comment: 13 pages, 3 figures, REVTEX, epsfi
Exclusive diffractive processes and the quark substructure of mesons
Exclusive diffractive processes on the nucleon are investigated within a
model in which the quark-nucleon interaction is mediated by Pomeron exchange
and the quark substructure of mesons is described within a framework based on
the Dyson-Schwinger equations of QCD. The model quark-nucleon interaction has
four parameters which are completely determined by high-energy and elastic scattering data. The model is then used to predict vector-meson
electroproduction observables. The obtained - and -meson
electroproduction cross sections are in excellent agreement with experimental
data. The predicted dependence of -meson electroproduction also
agrees with experimental data. It is shown that confined-quark dynamics play a
central role in determining the behavior of the diffractive, vector-meson
electroproduction cross section. In particular, the onset of the asymptotic
behavior of the cross section is determined by a momentum scale that is
set by the current-quark masses of the quark and antiquark inside the vector
meson. This is the origin of the striking differences between the
dependence of -, - and -meson electroproduction cross
sections observed in recent experiments.Comment: 53 pages, 23 figures, revtex and epsfig. Minor additions to tex
Ground-state Spectrum of Light-quark Mesons
A confining, Goldstone theorem preserving, separable Ansatz for the ladder
kernel of the two-body Bethe-Salpeter equation is constructed from
phenomenologically efficacious , and dressed-quark propagators. The
simplicity of the approach is its merit. It provides a good description of the
ground-state isovector-pseudoscalar, vector and axial-vector meson spectrum;
facilitates an exploration of the relative importance of various components of
the two-body Bethe-Salpeter amplitudes, showing that sub-leading Dirac
components are quantitatively important in the isovector-pseudoscalar meson
channels; and allows a scrutiny of the domain of applicability of ladder
truncation studies. A colour-antitriplet diquark spectrum is obtained.
Shortcomings of separable Ans\"atze and the ladder kernel are highlighted.Comment: 30 pages, LaTeX/REVTEX 3.0, no figure
Running coupling and fermion mass in strong coupling QED
Simple toy model is used in order to exhibit the technique of extracting the
non-perturbative information about Green's functions in Minkowski space. The
effective charge and the dynamical electron mass are calculated in strong
coupling 3+1 QED by solving the coupled Dyson-Schwinger equations for electron
and photon propagators. The minimal Ball-Chiu vertex was used for simplicity
and we impose the Landau gauge fixing on QED action. The solution obtained
separately in Euclidean and Minkowski space were compared, the latter one was
extracted with the help of spectral technique.Comment: 23 pages, 4 figures, v4: revised and extended version, one
introductory section adde
- …
