710 research outputs found

    Data Anonymization for Privacy Preservation in Big Data

    Get PDF
    Cloud computing provides capable ascendable IT edifice to provision numerous processing of a various big data applications in sectors such as healthcare and business. Mainly electronic health records data sets and in such applications generally contain privacy-sensitive data. The most popular technique for data privacy preservation is anonymizing the data through generalization. Proposal is to examine the issue against proximity privacy breaches for big data anonymization and try to recognize a scalable solution to this issue. Scalable clustering approach with two phase consisting of clustering algorithm and K-Anonymity scheme with Generalisation and suppression is intended to work on this problem. Design of the algorithms is done with MapReduce to increase high scalability by carrying out dataparallel execution in cloud. Wide-ranging researches on actual data sets substantiate that the method deliberately advances the competence of defensive proximity privacy breaks, the scalability and the efficiency of anonymization over existing methods. Anonymizing data sets through generalization to gratify some of the privacy attributes like k- Anonymity is a popularly-used type of privacy preserving methods. Currently, the gauge of data in numerous cloud surges extremely in agreement with the Big Data, making it a dare for frequently used tools to actually get, manage, and process large-scale data for a particular accepted time scale. Hence, it is a trial for prevailing anonymization approaches to attain privacy conservation for big data private information due to scalabilty issues

    Development of calcium sulfoaluminate cement composites for nuclear waste encapsulation

    Get PDF
    In the UK, nuclear wastes are usually ‘cemented’ before disposal so that harmful radionuclides can be physically and chemically contained. In this process, conventional Portland cement is blended with high levels of relatively inert mineral additions, mostly to reduce the high heat evolution in large pours. Calcium sulfoaluminate cement (CSAC) has recently attracted interest in various applications due to its lower pH and ability to bind significant quantities of water compared with conventional Portland cement. Such qualities are particularly suited to the encapsulation of legacy wastes such as aluminium and uranium, which would otherwise corrode if embedded within a Portland cement environment. While some early trials have demonstrated 111 good potential of CSAC, the rapid reaction rate (and associated heat generation) is still restricting its use. In this paper, common mineral additions such as ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA) and limestone powder (LSP) were incorporated at very high replacement levels (up to 75%) in an attempt to dilute the cement matrix and hence reduce the heat of hydration. Studies of compressive strength, heat of hydration and aluminium corrosion revealed that these CSAC composites demonstrate excellent potential for aluminium waste encapsulation. Keywords: Calcium sulfoaluminate cement, composites, nuclear waste encapsulation, corrosion, aluminiu

    Effect of calcium sulfates on the early hydration of calcium sulfoaluminate cement and the stability of embedded aluminium

    Get PDF
    Conventional Portland cement-based systems have been considered un-suitable for immobilising nuclear wastes containing reactive metals, such as alu-minium, due to the high pH of the pore solution (usually around 12.5) and free moisture. On the contrary, calcium sulfoaluminate cement (CSA) produces a low-er pH (10.5-12) environment and has an excellent water binding capability as a re-sult of the formation of its main hydration product, ettringite. Therefore, it offers a good potential to immobilise aluminium. However, the pore solution pH and ettringite formation depend largely on the raw materials used to formulate the CSA, which is usually a blend of 75%-85% of CSA clinker and 15-25% of calci-um sulfate (in the form of gypsum or anhydrite). In this paper, it was found that, compared to anhydrite, gypsum (15%wt of the blend) demonstrated the highest reduction in the corrosion of embedded Al, possibly due to its lower initial pH (around 10.5) and self-desiccating nature at the early stage of hydration. Whilst the CSA/anhydrite had a higher Al corrosion rate, the initial set was more ac-ceptable than CSA/gypsum. Nonetheless, overall, it was concluded that CSA with gypsum (15%wt) should be considered as a base formulation for the encapsulation of Al waste. The unfavorable rapid set and high heat generation, however, demon-strated that modifications are required, potentially by using mineral additions

    Chloride ingress through alkali activated slag concretes

    No full text
    Alkali activated slag (AAS) is a credible alternative to Portland cement (PC) based binder systems. The superior strength gain and low embodied carbon make it a potential binder for next generation concretes. However there is little known about the long term durability of AAS systems, especially the chloride transport and subsequent corrosion of reinforcing steel. In this study, chloride transport through 12 AAS concretes with different alkali concentrations (Na2O% of mass of slag) and different modulus (Ms) of sodium silicate solution activator was investigated. A non-steady state chloride diffusion test was used for this study due to its similarity to the real exposure environment in terms of chloride transport through concrete. The results showed that the chloride concentration at the surface (Cs) of AAS concretes was higher than that for PC concrete. However, lower non-steady state chloride diffusion coefficient (Dnssd) was obtained for the AAS concretes. The Dnssd of the AAS concretes decreased with the increase of Na2O% and Ms of 1.50 gave the lowest Dnssd. The results are encouraging and it can be concluded that AAS concrete offers a superior performance in terms of chloride transport

    The role of calcium stearate on regulating activation to form stable, uniform and flawless reaction products in alkali-activated slag cement

    Get PDF
    In the course of an investigation on using calcium stearate (CaSt) to improve performance of the alkali-activated slag (AAS) cement, the objective of the present work is to discovery its role in the AAS system. Special interest is devoted to understand the influence of CaSt on the reaction process, reaction products and microstructural features of the AAS cement. To achieve this, isothermal calorimetry, impedance characteristics, infrared spectroscopy, X-ray diffraction, thermogravimetry, nitrogen sorption, mercury intrusion porosimetry and scanning electron microscopy were carried out. According to results obtained, the CaSt has three important effects on the AAS cement. Firstly, it inhibited slag reaction with the activator through decreasing activity of alkalis, whereas the amount of C-(A)-S-H gels in the system depended on the usage of CaSt, because the CaSt could have chemical reactions with the alkali-solution and form similar reaction products. Secondly, there is less sodium and more calcium in reaction products of the CaSt added mix, which improve their stability and uniformity. Finally, microstructure characteristics (e.g. pore size distribution, pore connectivity) are optimised and defects are reduced significantly, when CaSt is added in the AAS mix

    Repeatability and Reliability of New Air and Water Permeability Tests for Assessing the Durability of High Performance Concretes

    Get PDF
    This paper reports on the accuracy of new test methods developed to measure the air and water permeability of high-performance concretes (HPCs). Five representative HPC and one normal concrete (NC) mixtures were tested to estimate both repeatability and reliability of the proposed methods. Repeatability acceptance was adjudged using values of signal-noise ratio (SNR) and discrimination ratio (DR), and reliability was investigated by comparing against standard laboratory-based test methods (i.e., the RILEM gas permeability test and BS EN water penetration test). With SNR and DR values satisfying recommended criteria, it was concluded that test repeatability error has no significant influence on results. In addition, the research confirmed strong positive relationships between the proposed test methods and existing standard permeability assessment techniques. Based on these findings, the proposed test methods show strong potential to become recognized as international methods for determining the permeability of HPCs

    Fifteen new records of Batoids (Elasmobranchii) from waters off Andaman and Nicobar Islands, India

    Get PDF
    Marine waters of Andaman and Nicobar Islands, India in the tropical Indian Ocean, is a poorly explored high faunal diverse region. The present study documents new records of batoids from the region, identified during the fishery and diversity monitoring surveys conducted during November 2016 to June 2019 at different fish landing centers of Andaman and Nicobar Islands. Fifteen elasmobranch species including 2 wedgefishes, 1 skate and 12 rays were identified and confirmed as new reports for the region. Results of this study indicate that the elasmobranch diversity, especially batoid diversity of Andaman and Nicobar Islands are poorly documented and future systematic surveys including that of deeper reef habitat may help to explore the diversity in the region

    Zebrafish as a model for leukemia and other hematopoietic disorders

    Full text link
    Zebrafish is an established model for the study of vertebrate development, and is especially amenable for investigating hematopoiesis, where there is strong conservation of key lineages, genes, and developmental processes with humans. Over recent years, zebrafish has been increasingly utilized as a model for a range of human hematopoietic diseases, including malignancies. This review provides an overview of zebrafish hematopoiesis and describes its application as a model of leukemia and other hematopoietic disorders

    Mitochondrial ATPase 6/8 genes to infer the population genetic structure of silver pomfret fish Pampus argenteus along the Indian waters

    Get PDF
    Silver pomfret, Pampus argenteus is an economically important seafood species. The fishery resource of pomfret in Indian waters shows a dwindling catch since the last few years and the pomfrets caught were mostly undersized which calls for immediate attempts for management of resources. An accurate definition of population structure is important for management of this species. The genetic stock structure of P. argenteus distributed along Indian coast was identified using analysis of 842 bp of complete ATPase 6/8 genes of mitochondrial DNA. Altogether, 83 silver pomfret (P. argenteus) collected from 4 locations along Indian coast (Gujarat, Kerala, Tamil Nadu and West Bengal) were sequenced. Twenty four haplotypes were identified among 83 individuals with haplotype diversity (0.87) and nucleotide diversity (0.0025). The significant pair-wise FST and AMOVA values, between samples from West Bengal (east coast) and other locations along the west coast (Gujarat and Kerala) indicated the occurrence of distinct population structure in silver pomfret along the coast
    corecore