7 research outputs found

    The auto assist bar system for disabled people

    Get PDF
    This paper presents the development of the auto assist bar system to help the disabled people especially paralyzed in the legs where they have a problem to doing transaction stand-to-sit and sit-to-stand. An example the difficult movement of people with disabilities are from wheelchair to bed or from wheelchair to the toilet bowl. Many people with disabilities use the grab bars or assist bar are sold in the markets where it is too difficult and require a lot of energy to use which can cause them to fall and injured. Through this system, the disabled people can do the transaction stand-to-sit and sit-to-stand without assistance from other persons. The work will be performed during this project is testing performance of the sensors, design for the entire system either on mechanical parts and use the PID controller by using Arduino to control of dc motor. PID parameter values of Kp, Ki and Kd is obtained which is suitable to enable a dc motor rotates smoothly. The overall results obtained from this project found all managed to achieve the overall objectives of the system where the system is able to support people with disabilities to stand up and sit down

    Sponge media drying using a swirling fluidized bed dryer

    Get PDF
    Surface preparation today has seen the introduction of sponge media as an alternative product against the traditionally used abrasive materials. Being soft and elastic, the sponge media reduces air borne emission significantly during surface preparation with capability to be re-used. However the environmental conditions limit the sponge media usage whereby wet surroundings prohibit the re-use of the sponge without being dried properly. This study proposes the swirling fluidized bed dryer as a novel drying technique for sponge media. Batch experiments were conducted to study the bed’s hydrodynamics followed by drying studies for three bed loadings of 0.5 kg, 0.75 kg and 1.0 kg at three drying temperatures of 80°C, 90°C and 100°C. It was found that, minimum fluidization velocities for the wet sponge particles were found to be 1.342, 1.361 and 1.382 m/s with minimum swirling velocities of 1.400, 1.469 and 1.526 m/s. Drying times were recorded between 6 to 16 minutes depending on bed loading and drying temperature. Smaller bed weights exhibits faster drying with constant-rate drying period while higher drying temperature and larger bed load resulted in falling-rate drying period. Thin layer modelling for the falling-rate region indicates that Verma et. al model provides the best fit for the present experimental data with coefficient of determination, R2 = 0.98773, root mean square error, RMSE = 0.05048, residuals = 0.3442 and reduced chi-square, χ2 = 0.00254. The effective diffusivity, Deff, for 0.5 kg bed load was found to be 3.454 x 10-9 m2/s and 1.751 x 10-9 m2/s for 0.75 kg bed load. In conclusion, SFBD was found to be a viable and efficient method in drying of sponge media for various industrial applications particularly surface preparation

    An adaptive protection of flooding attacks model for complex network environments

    Get PDF
    Currently, online organizational resources and assets are potential targets of several types of attack, the most common being flooding attacks. We consider the Distributed Denial of Service (DDoS) as the most dangerous type of flooding attack that could target those resources. The DDoS attack consumes network available resources such as bandwidth, processing power, and memory, thereby limiting or withholding accessibility to users. The Flash Crowd (FC) is quite similar to the DDoS attack whereby many legitimate users concurrently access a particular service, the number of which results in the denial of service. Researchers have proposed many different models to eliminate the risk of DDoS attacks, but only few efforts have been made to differentiate it from FC flooding as FC flooding also causes the denial of service and usually misleads the detection of the DDoS attacks. In this paper, an adaptive agent-based model, known as an Adaptive Protection of Flooding Attacks (APFA) model, is proposed to protect the Network Application Layer (NAL) against DDoS flooding attacks and FC flooding traffics. The APFA model, with the aid of an adaptive analyst agent, distinguishes between DDoS and FC abnormal traffics. It then separates DDoS botnet from Demons and Zombies to apply suitable attack handling methodology. There are three parameters on which the agent relies, normal traffic intensity, traffic attack behavior, and IP address history log, to decide on the operation of two traffic filters. We test and evaluate the APFA model via a simulation system using CIDDS as a standard dataset. The model successfully adapts to the simulated attack scenarios' changes and determines 303,024 request conditions for the tested 135,583 IP addresses. It achieves an accuracy of 0.9964, a precision of 0.9962, and a sensitivity of 0.9996, and outperforms three tested similar models. In addition, the APFA model contributes to identifying and handling the actual trigger of DDoS attack and differentiates it from FC flooding, which is rarely implemented in one model

    Basic concept of implementing Artificial Bee Colony (ABC) system in flow shop scheduling

    Get PDF
    Flow shop scheduling is a common operational problem in a production system. Effective flow shop scheduling can help the company to improve the management system, hence increase income. Artificial Bee Colony (ABC) is a system that is widely used for scheduling optimization in a production system since 2005. However, the fundamental ABC system uses a heuristic approach to obtain an optimum solution which may not be the optimum solution at all. The ABC system is tested on the speed to obtain the optimum solution for a flowshop scheduling problem and measures the applicability of the schedule in terms of makespan. A simple model of ABC algorithm was developed to identify the effectiveness of the ABC for solving flow shop scheduling problem compared to other established methods. Result shows the ABC model is capable of producing best makespan in flow shop problem tested

    Salp swarm and gray wolf optimizer for improving the efficiency of power supply network in radial distribution systems

    No full text
    The efficiency of distribution networks is hugely affected by active and reactive power flows in distribution electric power systems. Currently, distributed generators (DGs) of energy are extensively applied to minimize power loss and improve voltage deviancies on power distribution systems. The best position and volume of DGs produce better power outcomes. This work prepares a new hybrid SSA–GWO metaheuristic optimization algorithm that combines the salp swarm algorithm (SSA) and the gray wolf optimizer (GWO) algorithm. The SSA–GWO algorithm ensures generating the best size and site of one and multi-DGs on the radial distribution network to decrease real power losses (RPL) (kW) on lines and resolve voltage deviancies. Our novel algorithm is executed on IEEE 123-bus radial distribution test systems. The results confirm the success of the suggested hybrid SSA–GWO algorithm compared with implementing the SSA and GWO individually. Through the proposed SSA–GWO algorithm, the study decreases the RPL and improves the voltage profile on distribution networks with multiple DGs units

    Deep learning in distributed denial-ofservice attacks detection method for Internet of Things networks

    Get PDF
    With the rapid growth of informatics systems’ technology in this modern age, the Internet of Things (IoT) has become more valuable and vital to everyday life in many ways. IoT applications are now more popular than they used to be due to the availability of many gadgets that work as IoT enablers, including smartwatches, smartphones, security cameras, and smart sensors. However, the insecure nature of IoT devices has led to several difficulties, one of which is distributed denial-of-service (DDoS) attacks. IoT systems have several security limitations due to their disreputability characteristics, like dynamic communication between IoT devices. The dynamic communications resulted from the limited resources of these devices, such as their data storage and processing units. Recently, many attempts have been made to develop intelligent models to protect IoT networks against DDoS attacks. The main ongoing research issue is developing a model capable of protecting the network from DDoS attacks that is sensitive to various classes of DDoS and can recognize legitimate traffic to avoid false alarms. Subsequently, this study proposes combining three deep learning algorithms, namely recurrent neural network (RNN), long short-term memory (LSTM)-RNN, and convolutional neural network (CNN), to build a bidirectional CNN-BiLSTM DDoS detection model. The RNN, CNN, LSTM, and CNN-BiLSTM are implemented and tested to determine the most effective model against DDoS attacks that can accurately detect and distinguish DDoS from legitimate traffic. The intrusion detection evaluation dataset (CICIDS2017) is used to provide more realistic detection. The CICIDS2017 dataset includes benign and up-to-date examples of typical attacks, closely matching real-world data of Packet Capture. The four models are tested and assessed using Confusion Metrix against four commonly used criteria: accuracy, precision, recall, and F-measure. The performance of the models is quite effective as they obtain an accuracy rate of around 99.00%, except for the CNN model, which achieves an accuracy of 98.82%. The CNN-BiLSTM achieves the best accuracy of 99.76% and precision of 98.90%

    A Review of Optimization Algorithms in Solving Hydro Generation Scheduling Problems

    Get PDF
    The optimal generation scheduling (OGS) of hydropower units holds an important position in electric power systems, which is significantly investigated as a research issue. Hydropower has a slight social and ecological effect when compared with other types of sustainable power source. The target of long-, mid-, and short-term hydro scheduling (LMSTHS) problems is to optimize the power generation schedule of the accessible hydropower units, which generate maximum energy by utilizing the available potential during a specific period. Numerous traditional optimization procedures are first presented for making a solution to the LMSTHS problem. Lately, various optimization approaches, which have been assigned as a procedure based on experiences, have been executed to get the optimal solution of the generation scheduling of hydro systems. This article offers a complete survey of the implementation of various methods to get the OGS of hydro systems by examining the executed methods from various perspectives. Optimal solutions obtained by a collection of meta-heuristic optimization methods for various experience cases are established, and the presented methods are compared according to the case study, limitation of parameters, optimization techniques, and consideration of the main goal. Previous studies are mostly focused on hydro scheduling that is based on a reservoir of hydropower plants. Future study aspects are also considered, which are presented as the key issue surrounding the LMSTHS problem
    corecore