609 research outputs found

    Opening the black box of machine learning in radiology: can the proximity of annotated cases be a way?

    Get PDF
    Machine learning (ML) and deep learning (DL) systems, currently employed in medical image analysis, are data-driven models often considered as black boxes. However, improved transparency is needed to translate automated decision-making to clinical practice. To this aim, we propose a strategy to open the black box by presenting to the radiologist the annotated cases (ACs) proximal to the current case (CC), making decision rationale and uncertainty more explicit. The ACs, used for training, validation, and testing in supervised methods and for validation and testing in the unsupervised ones, could be provided as support of the ML/DL tool. If the CC is localised in a classification space and proximal ACs are selected by proper metrics, the latter ones could be shown in their original form of images, enriched with annotation to radiologists, thus allowing immediate interpretation of the CC classification. Moreover, the density of ACs in the CC neighbourhood, their image saliency maps, classification confidence, demographics, and clinical information would be available to radiologists. Thus, encrypted information could be transmitted to radiologists, who will know model output (what) and salient image regions (where) enriched by ACs, providing classification rationale (why). Summarising, if a classifier is data-driven, let us make its interpretation data-driven too

    Dynamic Assessment of Baroreflex Control of Heart Rate During Induction of Propofol Anesthesia Using a Point Process Method

    Get PDF
    In this article, we present a point process method to assess dynamic baroreflex sensitivity (BRS) by estimating the baroreflex gain as focal component of a simplified closed-loop model of the cardiovascular system. Specifically, an inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is identified by linear and bilinear bivariate regressions on both the previous R−R intervals (RR) and blood pressure (BP) beat-to-beat measures. The instantaneous baroreflex gain is estimated as the feedback branch of the loop with a point-process filter, while the RRBP feedforward transfer function representing heart contractility and vasculature effects is simultaneously estimated by a recursive least-squares filter. These two closed-loop gains provide a direct assessment of baroreflex control of heart rate (HR). In addition, the dynamic coherence, cross bispectrum, and their power ratio can also be estimated. All statistical indices provide a valuable quantitative assessment of the interaction between heartbeat dynamics and hemodynamics. To illustrate the application, we have applied the proposed point process model to experimental recordings from 11 healthy subjects in order to monitor cardiovascular regulation under propofol anesthesia. We present quantitative results during transient periods, as well as statistical analyses on steady-state epochs before and after propofol administration. Our findings validate the ability of the algorithm to provide a reliable and fast-tracking assessment of BRS, and show a clear overall reduction in baroreflex gain from the baseline period to the start of propofol anesthesia, confirming that instantaneous evaluation of arterial baroreflex control of HR may yield important implications in clinical practice, particularly during anesthesia and in postoperative care.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant K25-NS05758)National Institutes of Health (U.S.) (Grant DP2- OD006454)National Institutes of Health (U.S.) (Grant T32NS048005)National Institutes of Health (U.S.) (Grant T32NS048005)National Institutes of Health (U.S.) (Grant R01-DA015644)Massachusetts General Hospital (Clinical Research Center, UL1 Grant RR025758

    Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions

    Get PDF
    Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets

    DTI Parameter Optimisation for Acquisition at 1.5T: SNR Analysis and Clinical Application

    Get PDF
    Background. Magnetic Resonance (MR) diffusion tensor imaging (DTI) is able to quantify in vivo tissue microstructure properties and to detect disease related pathology of the central nervous system. Nevertheless, DTI is limited by low spatial resolution associated with its low signal-to-noise-ratio (SNR). Aim. The aim is to select a DTI sequence for brain clinical studies, optimizing SNR and resolution. Methods and Results. We applied 6 methods for SNR computation in 26 DTI sequences with different parameters using 4 healthy volunteers (HV). We choosed two DTI sequences for their high SNR, they differed by voxel size and b-value. Subsequently, the two selected sequences were acquired from 30 multiple sclerosis (MS) patients with different disability and lesion load and 18 age matched HV. We observed high concordance between mean diffusivity (MD) and fractional anysotropy (FA), nonetheless the DTI sequence with smaller voxel size displayed a better correlation with disease progression, despite a slightly lower SNR. The reliability of corpus callosum (CC) fiber tracking with the chosen DTI sequences was also tested. Conclusions. The sensitivity of DTI-derived indices to MS-related tissue abnormalities indicates that the optimized sequence may be a powerful tool in studies aimed at monitoring the disease course and severity

    Point process time–frequency analysis of dynamic respiratory patterns during meditation practice

    Get PDF
    Respiratory sinus arrhythmia (RSA) is largely mediated by the autonomic nervous system through its modulating influence on the heart beats. We propose a robust algorithm for quantifying instantaneous RSA as applied to heart beat intervals and respiratory recordings under dynamic breathing patterns. The blood volume pressure-derived heart beat series (pulse intervals, PIs) are modeled as an inverse Gaussian point process, with the instantaneous mean PI modeled as a bivariate regression incorporating both past PIs and respiration values observed at the beats. A point process maximum likelihood algorithm is used to estimate the model parameters, and instantaneous RSA is estimated via a frequency domain transfer function evaluated at instantaneous respiratory frequency where high coherence between respiration and PIs is observed. The model is statistically validated using Kolmogorov–Smirnov goodness-of-fit analysis, as well as independence tests. The algorithm is applied to subjects engaged in meditative practice, with distinctive dynamics in the respiration patterns elicited as a result. The presented analysis confirms the ability of the algorithm to track important changes in cardiorespiratory interactions elicited during meditation, otherwise not evidenced in control resting states, reporting statistically significant increase in RSA gain as measured by our paradigm.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant R01-DA015644)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant K01-AT00694-01

    Whole-Head Functional Near-Infrared Spectroscopy as an Ecological Monitoring Tool for Assessing Cortical Activity in Parkinson’s Disease Patients at Different Stages

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) is increasingly employed as an ecological neuroimaging technique in assessing age-related chronic neurological disorders, such as Parkinson’s disease (PD), mainly providing a cross-sectional characterization of clinical phenotypes in ecological settings. Current fNIRS studies in PD have investigated the effects of motor and non-motor impairment on cortical activity during gait and postural stability tasks, but no study has employed fNIRS as an ecological neuroimaging tool to assess PD at different stages. Therefore, in this work, we sought to investigate the cortical activity of PD patients during a motor grasping task and its relationship with both the staging of the pathology and its clinical variables. This study considered 39 PD patients (age 69.0 ± 7.64, 38 right-handed), subdivided into two groups at different stages by the Hoehn and Yahr (HY) scale: early PD (ePD; N = 13, HY = [1; 1.5]) and moderate PD (mPD; N = 26, HY = [2; 2.5; 3]). We employed a whole-head fNIRS system with 102 measurement channels to monitor brain activity. Group-level activation maps and region of interest (ROI) analysis were computed for ePD, mPD, and ePD vs. mPD contrasts. A ROI-based correlation analysis was also performed with respect to contrasted subject-level fNIRS data, focusing on age, a Cognitive Reserve Index questionnaire (CRIQ), disease duration, the Unified Parkinson’s Disease Rating Scale (UPDRS), and performances in the Stroop Color and Word (SCW) test. We observed group differences in age, disease duration, and the UPDRS, while no significant differences were found for CRIQ or SCW scores. Group-level activation maps revealed that the ePD group presented higher activation in motor and occipital areas than the mPD group, while the inverse trend was found in frontal areas. Significant correlations with CRIQ, disease duration, the UPDRS, and the SCW were mostly found in non-motor areas. The results are in line with current fNIRS and functional and anatomical MRI scientific literature suggesting that non-motor areas—primarily the prefrontal cortex area—provide a compensation mechanism for PD motor impairment. fNIRS may serve as a viable support for the longitudinal assessment of therapeutic and rehabilitation procedures, and define new prodromal, low-cost, and ecological biomarkers of disease progression

    Beat-to-beat variability of microvascular peripheral resistances assessed with a non-invasive approach

    Get PDF
    The pressure-flow relationship at peripheral level is non-invasively studied in human subjects: the impedance function and the beat-to-beat variability series of microvascular peripheral resistance are estimated. The frequency content of this variability signal is compared to those of more classical variability series at rest and during mild supine physical exercise

    Brain-vascular segmentation for SEEG planning via a 3D fully-convolutional neural network

    Get PDF
    Three dimensional visualization of vascular structures can assist clinicians in preoperative planning, intra-operative guidance, and post-operative decision-making. The goal of this work is to provide an automatic, accurate and fast method for brain vessels segmentation in Contrast Enhanced Cone Beam Computed Tomography (CE-CBCT) dataset based on a residual Fully Convolutional Neural Network (FCNN). The proposed NN embeds in an encoder-decoder architecture residual elements which decreases the vanishing effect due to deep architecture while accelerating the convergence. Moreover, a two-stage training has been proposed as a countermeasure for the unbalanced nature of the dataset. The FCNN training was performed on 20 CE-CBCT volumes exploiting mini-batch gradient descent andthe Adam optimizer. Binary cross-entropy was used as loss function. Performance evaluation was conducted considering 5 datasets. A median value of Dice, Precision and Recall of 0.79, 0.8 and 0.69 were obtained with respect to manual annotations

    From Nasion to Sellion: repositioning landmarks for radioprotection-tailored 3D cephalometric analysis

    Get PDF
    Purpose: The present study aimed to three-dimensionally evaluate the correlation between cephalometric measurements utilizing Sellion in place of Nasion. Material and methods: A pilot study using 25 CBCTs was carried out to determine the required sample size, reaching a minimum of 136 patients was required to validate the correlation between Nasion(N)- and Sellion(Se)-related measurements. Eight landmarks were manually annotated on full cranium CBCTs, resulting in six skeletal and six cutaneous/skeletal measurements. Therefore, data were statistically analysed after outliers’ detection and intraclass correlation coefficient (ICC) calculation. Pearson correlation coefficient (r) was used to assess the correlation between Nasion and Sellion measurements. At the end, simple linear regression was performed. Values of p < 0.01 and r > 0.80 were considered statistically and clinically relevant, respectively. Results: ICC revealed a substantial degree of consistency. A total of 214 CBCTs were included in the present study. Pearson test revealed highly significant correlations for all the tested variables; the highest coefficient was found between N^Me^Go vs Se^Me^Go (r = 0.989, p < 0.001) while the lowest among SNA vs SSeA (ρ = 0.814, p < 0.001). Finally, linear regression provided the new norm range values for the Sellion-based measurements. Conclusion: Pearson’s coefficients between Sellion- and Nasion-related measurements exhibited significantly high levels of correlation, suggesting the potential use of Sellion-based measurements for innovative cephalometric analyses. This method might comply with radiation protection principles in CBCT-based orthodontic cephalometry
    corecore