349 research outputs found

    Changes in the surface of Dipetalonema viteae (Filarioidea) during its development as shown by comparative peptide mapping

    Get PDF
    The cuticle of parasitic nematodes, the main contact site with the host, plays an important role in host-parasite interaction and thus also in immunological control. We compared different surface-iodinated life-stages of the filarial worm Dipetalonema viteae (microfilariae, infective 3rd-stage larvae (L3), adult males and females) with respect to changes in their surface composition. Autoradiographs of peptide maps show that all stages present an identical set of peptide spots reflecting common surface protein(s). Spots specific for larvae L3 show that the composition of the iodinated surface differs in microfilariae and adults i.e. it changes during development. Adults show a spot typical for males or females. Identical spots are found in L3. This suggests that a surface component is also sex specifi

    Comparison of surface iodination methods by electron microscopic autoradiography applied in vitro to different life-stages of Dipetalonema vitae (Filarioidea)

    Get PDF
    Different stages of Dipetalonema viteae (males, females, microfilariae, and 3rd-stage larvae) have been iodinated in vitro under physiological conditions by chloroglycoluril, lactoperoxidase or chloramine T. The concentrations of the catalysts were correlated with the viability of the worms. Localization of the label with the different iodination methods had been visualized by electron microscopical autoradiography. Chloroglycoluril-mediated iodination is predominantly localized on the filarial cuticle. Lactoperoxidase-catalysed iodination is less specific and chloramine T catalyses iodination in a gradient decreasing from the cuticle to inner structures. It is necessary to visualize the labelling by electron microscopical autoradiography prior to biochemical and immunological experiments to avoid the extraction of structures iodinated by leakage of the catalyst into sub-cuticular region

    The ER v-SNAREs are required for GPI-anchored protein sorting from other secretory proteins upon exit from the ER

    Get PDF
    Glycosylphosphatidylinositol (GPI)-anchored proteins exit the ER in distinct vesicles from other secretory proteins, and this sorting event requires the Rab GTPase Ypt1p, tethering factors Uso1p, and the conserved oligomeric Golgi complex. Here we show that proper sorting depended on the vSNAREs, Bos1p, Bet1p, and Sec22p. However, the t-SNARE Sed5p was not required for protein sorting upon ER exit. Moreover, the sorting defect observed in vitro with bos1–1 extracts was also observed in vivo and was visualized by EM. Finally, transport and maturation of the GPI-anchored protein Gas1p was specifically affected in a bos1–1 mutant at semirestrictive temperature. Therefore, we propose that v-SNAREs are part of the cargo protein sorting machinery upon exit from the ER and that a correct sorting process is necessary for proper maturation of GPI-anchored proteins

    Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold

    Get PDF
    Positively charged nanogold was used as a probe to trace the internalization of plasma membrane (PM) domains carrying negatively charged residues at an ultrastructural level. The probe revealed distinct endocytic pathways within tobacco protoplasts and allowed the morphology of the organelles involved in endocytosis to be characterized in great detail. Putative early endosomes with a tubulo-vesicular structure, similar to that observed in animal cells, are described and a new compartment, characterized by interconnected vesicles, was identified as a late endosome using the Arabidopsis anti-syntaxin family Syp-21 antibody. Endocytosis dissection using Brefeldin A (BFA), pulse chase, temperature- and energy-dependent experiments combined with quantitative analysis of nanogold particles in different compartments, suggested that recycling to the PM predominated with respect to degradation. Further experiments using ikarugamycin (IKA), an inhibitor of clathrin-dependent endocytosis, and negatively charged nanogold confirmed that distinct endocytic pathways coexist in tobacco protoplast

    Shared and specific functions of Arfs 1-5 at the Golgi revealed by systematic knockouts

    Get PDF
    ADP-ribosylation factors (Arfs) are small GTPases regulating membrane traffic in the secretory pathway. They are closely related and appear to have overlapping functions, regulators, and effectors. The functional specificity of individual Arfs and the extent of redundancy are still largely unknown. We addressed these questions by CRISPR/Cas9-mediated genomic deletion of the human class I (Arf1/3) and class II (Arf4/5) Arfs, either individually or in combination. Most knockout cell lines were viable with slight growth defects only when lacking Arf1 or Arf4. However, Arf1+4 and Arf4+5 could not be deleted simultaneously. Class I Arfs are nonessential, and Arf4 alone is sufficient for viability. Upon Arf1 deletion, the Golgi was enlarged, and recruitment of vesicle coats decreased, confirming a major role of Arf1 in vesicle formation at the Golgi. Knockout of Arf4 caused secretion of ER-resident proteins, indicating specific defects in coatomer-dependent ER protein retrieval by KDEL receptors. The knockout cell lines will be useful tools to study other Arf-dependent processes

    A novel live-cell imaging assay reveals regulation of endosome maturation

    Get PDF
    Cell-cell communication is an essential process in life, with endosomes acting as key organelles for regulating uptake and secretion of signaling molecules. Endocytosed material is accepted by the sorting endosome where it either is sorted for recycling or remains in the endosome as it matures to be degraded in the lysosome. Investigation of the endosome maturation process has been hampered by the small size and rapid movement of endosomes in most cellular systems. Here, we report an easy versatile live-cell imaging assay to monitor endosome maturation kinetics, which can be applied to a variety of mammalian cell types. Acute ionophore treatment led to enlarged early endosomal compartments that matured into late endosomes and fused with lysosomes to form endolysosomes. Rab5-to-Rab7 conversion and PI(3)P formation and turn over were recapitulated with this assay and could be observed with a standard widefield microscope. We used this approach to show that Snx1 and Rab11-positive recycling endosome recruitment occurred throughout endosome maturation and was uncoupled from Rab conversion. In contrast, efficient endosomal acidification was dependent on Rab conversion. The assay provides a powerful tool to further unravel various aspects of endosome maturation

    Molecular weight determination of membrane proteins by sedimentation equilibrium at the sucrose or Nycodenz-adjusted density of the hydrated detergent micelle11Dedication: In memory of our late friend Martin Zulauf, who crashed with his ‘Ultralight’ on June 17, 1995 in France. He published more than 50 papers on detergents and their interactions with proteins. It was always a pleasure to work with him and we hope that this modest contribution will be in his sense.

    Get PDF
    AbstractThe determination of the molecular weight of a membrane protein by sedimentation equilibrium is complicated by the fact that these proteins interact with detergents and form complexes of unknown density. These effects become marginal when running sedimentation equilibrium at gravitational transparency, i.e., at the density corresponding to that of the hydrated detergent micelles. Dodecyl-maltoside and octyl-glucoside are commonly used for dissolving membrane proteins. The density of micelles thereof was measured in sucrose or Nycodenz. Both proved to be about 50% lower than those of the corresponding non-hydrated micelles. Several membrane proteins were centrifuged at sedimentation equilibrium in sucrose- and in Nycodenz-enriched solutions of various densities. Their molecular weights were then calculated by using the resulting slope value at the density of the hydrated detergent micelles, i.e. at gravitational transparency, and the partial specific volume corrected for a 50% hydration of the membrane protein. The molecular weights of all measured membrane proteins, i.e. of photosystem II complex, reaction center of Rhodobacter sphaeroides R26, spinach photosystem II reaction center (core complex), bacteriorhodopsin, OmpF-porin and rhodopsin from Bovine retina corresponded within ±15% to those reported previously, indicating a general applicability of this approach

    Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane

    Get PDF
    Endocytosis in yeast requires actin and clathrin. Live cell imaging has previously shown that massive actin polymerization occurs concomitant with a slow 200-nm inward movement of the endocytic coat (Kaksonen, M., Y. Sun, and D.G. Drubin. 2003. Cell. 115:475–487). However, the nature of the primary endocytic profile in yeast and how clathrin and actin cooperate to generate an endocytic vesicle is unknown. In this study, we analyze the distribution of nine different proteins involved in endocytic uptake along plasma membrane invaginations using immunoelectron microscopy. We find that the primary endocytic profiles are tubular invaginations of up to 50 nm in diameter and 180 nm in length, which accumulate the endocytic coat components at the tip. Interestingly, significant actin labeling is only observed on invaginations longer than 50 nm, suggesting that initial membrane bending occurs before initiation of the slow inward movement. We also find that in the longest profiles, actin and the myosin-I Myo5p form two distinct structures that might be implicated in vesicle fission

    Pulmonary Tumor Thrombotic Microangiopathy in a Patient with Rapid Progressive Triple-Negative Breast Cancer

    Get PDF
    Introduction: Pulmonary tumor thrombotic microangiopathy (PTTM) is a rare complication of metastatic carcinoma, which occurs in patients with pulmonary arterial hypertension, and is mostly fatal. Circulating tumor cell clusters have been recognized as critical factors during breast cancer progression. Case Presentation: An 80-year-old woman with triple-negative breast cancer was admitted to our hospital with progressive dyspnea and lower back pain. Breast cancer treatment included mastectomy, neoadjuvant and adjuvant chemotherapy as well as adjuvant radiotherapy, receiving her last cycle of radiotherapy 8 days before death. At admission, D-dimers were strongly elevated and platelets were low. NT-pro-BNP was moderately elevated. A CT scan of the chest did not show pulmonary embolism but revealed interlobular septal thickening, centrilobular consolidation, and distension of the pulmonary arteries. Moreover, new skeletal and most likely lymphatic metastasis was described. Treatment with oxygen and oral glucocorticoids was initiated, assuming radiotherapy-induced pneumonitis. Due to low expression of PD-L1 and her markedly bad performance status, tumor-specific therapy was not possible, and the treatment regimen was changed to best supportive care. The patient died 8 days after admission. Autopsy revealed numerous events consistent with tumor emboli in the pulmonary vessels, suggesting PTTM. Conclusion: PTTM is a rare and mostly fatal complication in malignant breast cancer. As an early detection is difficult, further investigation is needed. Circulating tumor cluster cells may be one way to detect PTTM early and improve patients’ survival
    • …
    corecore