312 research outputs found
Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens.
Hyaluronic acid (HA) has several clinical applications (aesthetic surgery, dermatology, orthopaedics and ophtalmology). Following recent evidence, suggesting antimicrobial and antiviral properties for HA, we investigated its effects on 15 ATCC strains, representative ofclinically relevant bacterial and fungal species. The in vitro system employed allowed to assess optical density of broth cultures as a measure of microbial load in a time-dependent manner. The results showed that different microbial species and, sometimes, different strains belonging to the same species, are differently affected by HA. In particular, staphylococci, enterococci, Streptococcus mutans, twoEscherichia coli strains, Pseudomonas aeruginosa, Candida glabrata and C. parapsilosis displayed a HA dosedependent growth inhibition; no HA effects were detected in E. coli ATCC 13768 and C. albicans; S. sanguinis was favoured by the highest HA dose. Therefore, the influence of HA on bacteria and fungi warrants further studies aimedat better establishing its relevance in clinical applications
Countdown to 2015: Ethiopia's progress towards reduction in under-five mortality: 2014 country case study
On September 13, 2013 the Federal Ministry of Health (FMoH) of Ethiopia and UNICEF
announced that Ethiopia has successfully reduced the under-five mortality rate by two
thirds between 1990 and 2012, which is the target for achieving Millennium Development
Goal-4. In 1990, the under-five mortality rate in Ethiopia was one of the highest in the
world at 205/1,000 live births. However, by 2012, this rate had declined to 68/1,000 live
births with an average annual rate of decline of 5.0%. This exceeded the 4.3% annual rate
of decline needed to reach MDG4 and was significantly higher than the decline rates
observed in many sub-Saharan African countries and even other low and middle-income
countries. In an effort to understand the story behind Ethiopia’s remarkable achievement
of MDG-4, EPHI has conducted this in-depth Case Study which is supported by Countdown
to 2015. The findings are believed to generate valuable lessons and guidance for other
low-income countries in their quest for accelerating health improvements and reducing
child deaths
Autonomic dysfunction in progressive supranuclear palsy
Background: The degree of involvement of the autonomic nervous system in progressive supranuclear palsy (PSP) has been investigated in several studies, often providing conflicting results. There is a need for a better characterization of autonomic dysfunction in PSP, to enhance our understanding of this highly disabling neurodegenerative disease including patients’ needs and possibly be of value for clinicians in the differential diagnosis among Parkinsonian syndromes. Methods: We applied a systematic methodology to review existing literature on Pubmed regarding autonomic nervous system involvement in PSP. Results: PSP reported quite frequently symptoms suggestive of autonomic dysfunction in all domains. Cardiovascular autonomic testing showed in some cases a certain degree of impairment (never severe). There was some evidence suggesting bladder dysfunction particularly in the storage phase. Dysphagia and constipation were the most common gastrointestinal symptoms. Instrumental tests seemed to confirm sudomotor and pupillomotor disturbances. Conclusions: PSP patients frequently reported visceral symptoms, however objective testing showed that not always these reflected actual autonomic impairment. Further studies are needed to better delineate autonomic profile and its prognostic role in PSP
Long-chain surface-modified red-emitting carbon dots as fluorescent additives for 3D printing vat-photopolymerization
Carbon dots have recently attracted tremendous scientific attention thanks to their enhanced luminescence properties, photostability and low toxicity. In particular, red-emitting carbon dots (RCDs) are assuming increasing importance in biomedical applications, such as bio-imaging and phototherapy. At the same time, the possibility to create functional and complex objects by means of vat-photopolymerization-based three-dimensional (3D) printing techniques is continuously growing. This work describes the synthesis of long-chain surface-modified red emitting carbon dots, L-RCDs by esterification of RCDs, obtained from green reagents with a new solvothermal synthesis, and their employment as fluorescent additives in two formulations of photopolymerizable resins. The printing process proceeded smoothly in all cases, and red-emitting objects with different mechanical properties have been successfully obtained
Iridium-Functionalized Cellulose Microcrystals as a Novel Luminescent Biomaterial for Biocomposites
Microcrystalline cellulose (MCC) is an emerging material with outstanding properties in many scientific and industrial fields, in particular as an additive in composite materials. Its surface modification allows for the fine-tuning of its properties and the exploitation of these materials in a plethora of applications. In this paper, we present the covalent linkage of a luminescent Ir-complex onto the surface of MCC, representing the first incorporation of an organometallic luminescent probe in this biomaterial. This goal has been achieved with an easy and sustainable procedure, which employs a Bronsted-acid ionic liquid as a catalyst for the esterification reaction of -OH cellulose surface groups. The obtained luminescent cellulose microcrystals display high and stable emissions with the incorporation of only a small amount of iridium (III). Incorporation of MCC-Ir in dry and wet matrices, such as films and gels, has been also demonstrated, showing the maintenance of the luminescent properties even in possible final manufacturers
Targeting of Tomato Bushy Stunt Virus with a Genetically Fused C-End Rule Peptide
Homing peptides are widely used to improve the delivery of drugs, imaging agents, and nanoparticles (NPs) to their target sites. Plant virus-based particles represent an emerging class of structurally diverse nanocarriers that are biocompatible, biodegradable, safe, and cost-effective. Similar to synthetic NPs, these particles can be loaded with imaging agents and/or drugs and functionalized with affinity ligands for targeted delivery. Here we report the development of a peptide-guided Tomato Bushy Stunt Virus (TBSV)-based nanocarrier platform for affinity targeting with the C-terminal C-end rule (CendR) peptide, RPARPAR (RPAR). Flow cytometry and confocal microscopy demonstrated that the TBSV-RPAR NPs bind specifically to and internalize in cells positive for the peptide receptor neuropilin-1 (NRP-1). TBSV-RPAR particles loaded with a widely used anticancer anthracycline, doxorubicin, showed selective cytotoxicity on NRP-1-expressing cells. Following systemic administration in mice, RPAR functionalization conferred TBSV particles the ability to accumulate in the lung tissue. Collectively, these studies show the feasibility of the CendR-targeted TBSV platform for the precision delivery of payloads
Stereoisomeric Homo- and Hetero-Binuclear Iridium(III) Complexes with 3-Oxidopicolinate Bridging Ligand and Their Application in OLEDs
The small and simple 3-hydroxypyridine-2-carboxylic acid (Hpic-OH) is explored as asymmetric bridging ligand for the synthesis of neutral binuclear cyclometalated iridium(III) complexes. Once fully deprotonated the picO2– ligand can act as ancillary ligand toward two iridium centers adopting both the N^O– and O^O– chelation modes. To tune the energy of the excited states within such binuclear complexes, the 2-(2,4-difluorophenyl)pyridine (Hdfppy) and the 2-phenylbenzothiazole (Hpbtz) are used as cyclometalating ligands to respectively obtain both blue- or orange-emissive homo-cyclometalated complexes (BB and YY, with formula [Ir(dfppy)2]2(picO) and [Ir(pbtz)2]2(picO), respectively). Moreover, for the first time, short-bridged hetero-cyclometalated binuclear complexes are also obtained (BY and YB, with formula [Ir(dfppy)2](picO)[Ir(pbtz)2] and [Ir(pbtz)2](picO)[Ir(dfppy)2]). Depending on the reciprocal arrangement of the cyclometalating ligands on the two sides of the small picolinate bridge, two couples of diastereoisomers are obtained and efficiently separated, as proved by combined NMR and DFT studies. The reported binuclear complexes are highly emissive with photoluminescence quantum yields (PLQYs) up to 67%, which are comparable to those of their mononuclear analogues (B and Y). Due to the full reversibility of their redox processes, all the complexes are also tested in solution-processed organic light-emitting diodes, providing unique OLEDs based on hetero-binuclear cyclometalated iridium(III) complexe
Asymmetric Organocatalysis Accelerated via Self-Assembled Minimal Structures
Self-assembling minimalistic peptides embedded with an organocatalytic moiety were designed. By controlling the formation of fibrils via external intervention, it was shown that the activation is accelerated when the organocatalyst is in its supramolecular state. The effect of the accelerated catalysis was demonstrated in a Michael benchmark reaction
Processing and structural properties of random oriented lead lanthanum zirconate titanate thin films
Polycrystalline lead lanthanum zirconate titanate (PLZT) thin films have been prepared by a polymeric chemical route to understand the mechanisms of phase transformations and map the microstructure and elastic properties at the nanoscale in these films. X-ray diffraction, atomic force microscopy (AFM) and ultrasonic force microscopy (UFM) have been used as investigative tools. On one side, PLZT films with mixed-phase show that the pyrochlore phase crystallizes predominantly in the bottom film-electrode interface while a pure perovskite phase crystallizes in top film surface. On the contrary, pyrochlore-free PLZT films show a non-uniform microstrain and crystallite size along the film thickness with a heterogeneous complex grainy structure leading to different elastic properties at nanoscale
The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies
<p>Abstract</p> <p>Background</p> <p>Germline specific promoters are an essential component of potential vector control strategies which function by genetic drive, however suitable promoters are not currently available for the main human malaria vector <it>Anopheles gambiae</it>.</p> <p>Results</p> <p>We have identified the <it>Anopheles gambiae vasa</it>-like gene and found its expression to be specifically localized to both the male and female gonads in adult mosquitoes. We have functionally characterised using transgenic reporter lines the regulatory regions required for driving transgene expression in a pattern mirroring that of the endogenous <it>vasa </it>locus. Two reporter constructs indicate the existence of distinct <it>vasa </it>regulatory elements within the 5' untranslated regions responsible not only for the spatial and temporal but also for the sex specific germline expression. <it>vasa </it>driven eGFP expression in the ovary of heterozygous mosquitoes resulted in the progressive accumulation of maternal protein and transcript in developing oocytes that were then detectable in all embryos and neonatal larvae.</p> <p>Conclusion</p> <p>We have characterized the <it>vasa </it>regulatory regions that are not only suited to drive transgenes in the early germline of both sexes but could also be utilized to manipulate the zygotic genome of developing embryos via maternal deposition of active molecules. We have used computational models to show that a homing endonuclease-based gene drive system can function in the presence of maternal deposition and describe a novel non-invasive control strategy based on early <it>vasa </it>driven homing endonuclease expression.</p
- …
