81 research outputs found
Rotational Correlation Functions of Single Molecules
Single molecule rotational correlation functions are analyzed for several
reorientation geometries. Even for the simplest model of isotropic rotational
diffusion our findings predict non-exponential correlation functions to be
observed by polarization sensitive single molecule fluorescence microscopy.
This may have a deep impact on interpreting the results of molecular
reorientation measurements in heterogeneous environments.Comment: 5 pages, 4 figure
The intensity correlation function of "blinking" quantum systems
Explicit expressions are determined for the photon correlation function of
``blinking'' quantum systems, i.e. systems with different types of fluorescent
periods. These expressions can be used for a fit to experimental data and for
obtaining system parameters therefrom. For two dipole-dipole interacting
systems the dependence on the dipole coupling constant is explicitly given and
shown to be particularly pronounced if the strong driving is reduced. We
propose to use this for an experimental verification of the dipole-dipole
interaction.Comment: 12 pages, 5 figures, uses iopams.st
Enhancing single-molecule photostability by optical feedback from quantum-jump detection
We report an optical technique that yields an enhancement of single-molecule
photostability, by greatly suppressing photobleaching pathways which involve
photoexcitation from the triplet state. This is accomplished by dynamically
switching off the excitation laser when a quantum-jump of the molecule to the
triplet state is optically detected. This procedure leads to a lengthened
single-molecule observation time and an increased total number of detected
photons. The resulting improvement in photostability unambiguously confirms the
importance of photoexcitation from the triplet state in photobleaching
dynamics, and may allow the investigation of new phenomena at the
single-molecule level
Photonic mode density effects on single-molecule fluorescence blinking
We investigated the influence of the photonic mode density (PMD) on the
triplet dynamics of individual chromophores on a dielectric interface by
comparing their response in the presence and absence of a nearby gold film.
Lifetimes of the excited singlet state were evaluated in ordet to measure
directly the PMD at the molecules position. Triplet state lifetimes were
simultaneously determined by statistical analysis of the detection time of the
fluorescence photons. The observed singlet decay rates are in agreement with
the predicted PMD for molecules with different orientations. The triplet decay
rate is modified in a fashion correlated to the singlet decay rate. These
results show that PMD engineering can lead to an important suppression of the
fluorescence, introducing a novel aspect of the physical mechanism to enhance
fluorescence intensity in PMD-enhancing systems such as plasmonic devices
Coherent State Preparation and Observation of Rabi Oscillations in a Single Molecule
We report on the excitation of single molecules via narrow zero-phonon
transitions using short laser pulses. By monitoring the Stokes-shifted
fluorescence, we studied the excited state population as a function of the
delay time, laser intensity, and frequency detuning. A pi-pulse excitation was
demonstrated with merely 500 photons, and 5 Rabi cycles were achieved at higher
excitation powers. Our findings are in good agreement with theoretical
calculations and provide a first step toward coherent manipulation of the
electronic states of single molecules with few photons.Comment: 4 pages, 3 figure
Single photon generation by pulsed excitation of a single dipole
The fluorescence of a single dipole excited by an intense light pulse can
lead to the generation of another light pulse containing a single photon. The
influence of the duration and energy of the excitation pulse on the number of
photons in the fluorescence pulse is studied. The case of a two-level dipole
with strongly damped coherences is considered. The presence of a metastable
state leading to shelving is also investigated.Comment: 17 pages, 4 figures, submitted to PR
Quantum jumps of light recording the birth and death of a photon in a cavity
A microscopic system under continuous observation exhibits at random times
sudden jumps between its states. The detection of this essential quantum
feature requires a quantum non-demolition (QND) measurement repeated many times
during the system evolution. Quantum jumps of trapped massive particles
(electrons, ions or molecules) have been observed, which is not the case of the
jumps of light quanta. Usual photodetectors absorb light and are thus unable to
detect the same photon twice. They must be replaced by a transparent counter
'seeing' photons without destroying them3. Moreover, the light has to be stored
over a duration much longer than the QND detection time. We have fulfilled
these challenging conditions and observed photon number quantum jumps.
Microwave photons are stored in a superconducting cavity for times in the
second range. They are repeatedly probed by a stream of non-absorbing atoms. An
atom interferometer measures the atomic dipole phase shift induced by the
non-resonant cavity field, so that the final atom state reveals directly the
presence of a single photon in the cavity. Sequences of hundreds of atoms
highly correlated in the same state, are interrupted by sudden
state-switchings. These telegraphic signals record, for the first time, the
birth, life and death of individual photons. Applying a similar QND procedure
to mesoscopic fields with tens of photons opens new perspectives for the
exploration of the quantum to classical boundary
- …