81 research outputs found

    Rotational Correlation Functions of Single Molecules

    Full text link
    Single molecule rotational correlation functions are analyzed for several reorientation geometries. Even for the simplest model of isotropic rotational diffusion our findings predict non-exponential correlation functions to be observed by polarization sensitive single molecule fluorescence microscopy. This may have a deep impact on interpreting the results of molecular reorientation measurements in heterogeneous environments.Comment: 5 pages, 4 figure

    The intensity correlation function of "blinking" quantum systems

    Full text link
    Explicit expressions are determined for the photon correlation function of ``blinking'' quantum systems, i.e. systems with different types of fluorescent periods. These expressions can be used for a fit to experimental data and for obtaining system parameters therefrom. For two dipole-dipole interacting VV systems the dependence on the dipole coupling constant is explicitly given and shown to be particularly pronounced if the strong driving is reduced. We propose to use this for an experimental verification of the dipole-dipole interaction.Comment: 12 pages, 5 figures, uses iopams.st

    Enhancing single-molecule photostability by optical feedback from quantum-jump detection

    Full text link
    We report an optical technique that yields an enhancement of single-molecule photostability, by greatly suppressing photobleaching pathways which involve photoexcitation from the triplet state. This is accomplished by dynamically switching off the excitation laser when a quantum-jump of the molecule to the triplet state is optically detected. This procedure leads to a lengthened single-molecule observation time and an increased total number of detected photons. The resulting improvement in photostability unambiguously confirms the importance of photoexcitation from the triplet state in photobleaching dynamics, and may allow the investigation of new phenomena at the single-molecule level

    Photonic mode density effects on single-molecule fluorescence blinking

    Get PDF
    We investigated the influence of the photonic mode density (PMD) on the triplet dynamics of individual chromophores on a dielectric interface by comparing their response in the presence and absence of a nearby gold film. Lifetimes of the excited singlet state were evaluated in ordet to measure directly the PMD at the molecules position. Triplet state lifetimes were simultaneously determined by statistical analysis of the detection time of the fluorescence photons. The observed singlet decay rates are in agreement with the predicted PMD for molecules with different orientations. The triplet decay rate is modified in a fashion correlated to the singlet decay rate. These results show that PMD engineering can lead to an important suppression of the fluorescence, introducing a novel aspect of the physical mechanism to enhance fluorescence intensity in PMD-enhancing systems such as plasmonic devices

    Coherent State Preparation and Observation of Rabi Oscillations in a Single Molecule

    Full text link
    We report on the excitation of single molecules via narrow zero-phonon transitions using short laser pulses. By monitoring the Stokes-shifted fluorescence, we studied the excited state population as a function of the delay time, laser intensity, and frequency detuning. A pi-pulse excitation was demonstrated with merely 500 photons, and 5 Rabi cycles were achieved at higher excitation powers. Our findings are in good agreement with theoretical calculations and provide a first step toward coherent manipulation of the electronic states of single molecules with few photons.Comment: 4 pages, 3 figure

    Single photon generation by pulsed excitation of a single dipole

    Get PDF
    The fluorescence of a single dipole excited by an intense light pulse can lead to the generation of another light pulse containing a single photon. The influence of the duration and energy of the excitation pulse on the number of photons in the fluorescence pulse is studied. The case of a two-level dipole with strongly damped coherences is considered. The presence of a metastable state leading to shelving is also investigated.Comment: 17 pages, 4 figures, submitted to PR

    Quantum jumps of light recording the birth and death of a photon in a cavity

    Full text link
    A microscopic system under continuous observation exhibits at random times sudden jumps between its states. The detection of this essential quantum feature requires a quantum non-demolition (QND) measurement repeated many times during the system evolution. Quantum jumps of trapped massive particles (electrons, ions or molecules) have been observed, which is not the case of the jumps of light quanta. Usual photodetectors absorb light and are thus unable to detect the same photon twice. They must be replaced by a transparent counter 'seeing' photons without destroying them3. Moreover, the light has to be stored over a duration much longer than the QND detection time. We have fulfilled these challenging conditions and observed photon number quantum jumps. Microwave photons are stored in a superconducting cavity for times in the second range. They are repeatedly probed by a stream of non-absorbing atoms. An atom interferometer measures the atomic dipole phase shift induced by the non-resonant cavity field, so that the final atom state reveals directly the presence of a single photon in the cavity. Sequences of hundreds of atoms highly correlated in the same state, are interrupted by sudden state-switchings. These telegraphic signals record, for the first time, the birth, life and death of individual photons. Applying a similar QND procedure to mesoscopic fields with tens of photons opens new perspectives for the exploration of the quantum to classical boundary
    corecore