1,136 research outputs found
On Fuzzy Regression Adapting Partial Least Squares
Partial Least Squared (PLS) regression is a model linking a dependent variable y to a set of X (numerical or categorical) explanatory variables. It can be obtained as a series of simple and multiple regressions of simple and multiple regressions. PLS is an alternative to classical regression model when there are many variables or the variables are correlated. On the other hand, an alternative method to regression in order to model data has been studied is called Fuzzy Linear Regression (FLR). FLR is one of the modelling techniques based on fuzzy set theory. It is applied to many diversified areas such as engineering, biology, finance and so on. Development of FLR follows mainly two paths. One of which depends on improving the parameter estimation methods. This enables to compute more reliable and more accurate parameter estimation in fuzzy setting. Second of which is related to applying these methods to data, which usually do not follow strict assumptions. The application point of view of FLR has not been examined widely except outlier case. For example, it has not been widely examined how FLR behaves under the multivariate case. To overcome such a problem in classic setting, one of the methods that are practically useful is PLS. In this paper, FLR is examined based on application point of view when it has several explanatory variables by adapting PLS
Very high two-dimensional hole gas mobilities in strained silicon germanium
We report on the growth by solid source MBE and characterization of remote doped Si/SiGe/Si two-dimensional hole gas structures. It has been found that by reducing the Ge composition to <=13% and limiting the thickness of the alloy layer, growth temperatures can be increased up to 950 °C for these structures while maintaining good structural integrity and planar interfaces. Record mobilities of 19 820 cm2 V−1 s−1 at 7 K were obtained in normal structures. Our calculations suggest that alloy scattering is not important in these structures and that interface roughness and interface charge scattering limit the low temperature mobilities
The inexorable resistance of inertia determines the initial regime of drop coalescence
Drop coalescence is central to diverse processes involving dispersions of
drops in industrial, engineering and scientific realms. During coalescence, two
drops first touch and then merge as the liquid neck connecting them grows from
initially microscopic scales to a size comparable to the drop diameters. The
curvature of the interface is infinite at the point where the drops first make
contact, and the flows that ensue as the two drops coalesce are intimately
coupled to this singularity in the dynamics. Conventionally, this process has
been thought to have just two dynamical regimes: a viscous and an inertial
regime with a crossover region between them. We use experiments and simulations
to reveal that a third regime, one that describes the initial dynamics of
coalescence for all drop viscosities, has been missed. An argument based on
force balance allows the construction of a new coalescence phase diagram
Thin-sheet flow between coalescing bubbles
When two spherical bubbles touch, a hole is formed in the fluid sheet between them, and capillary pressure acting on its tightly curved edge drives an outward radial flow which widens the hole joining the bubbles. Recent images of the early stages of this process (Paulsen et al., Nat. Commun., vol. 5, 2014) show that the radius of the hole at time grows proportional to , and that the rate is dependent on the fluid viscosity. Here, we explain this behaviour in terms of similarity solutions to a third-order system of radial extensional-flow equations for the thickness and velocity of the sheet of fluid between the bubbles, and determine the growth rate as a function of the Ohnesorge number . The initially quadratic sheet profile allows the ratio of viscous and inertial effects to be independent of time. We show that the sheet is slender for if , where is the bubble radius, but only slender for if due to a compressional boundary layer of length , after which there is a change in the structure but not the speed of the retracting sheet. For , the detailed analysis justifies a simple momentum-balance argument, which gives the analytic prediction , where is the surface tension and is the density.J.P.M. acknowledges an Engineering and Physical Sciences Research Council studentship. C.R.A. and O.A.B. acknowledge the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. All data accompanying this publication are directly available within the publication.This is the accepted manuscript of a paper published in the Journal of Fluid Mechanics (Munro JP, Anthony CR, Basaran OA, Lister JR, Journal of Fluid Mechanics, 2015, 773, doi:10.1017/jfm.2015.253). The final version is available at http://dx.doi.org/10.1017/jfm.2015.25
Effective mass and band nonparabolicity in remote doped Si/Si0.8Ge0.2 quantum wells
The effective masses in remote doped Si/Si0.8Ge0.2/Si quantum wells having sheet densities, Ns in the range 2 × 1011–1.1 × 1012 cm – 2 have been determined from the temperature dependencies of the Shubnikov–de Haas oscillations. The values obtained increase with magnetic field and Ns. This behavior is taken as evidence for the nonparabolicity of the valence band and accounts for the discrepancies in previously reported masses. Self-consistent band structure calculations for a triangular confinement of the carriers have also been carried out and provide confirmation of the increase in mass with Ns. Theory and experiment give extrapolated Gamma point effective masses of 0.21 and 0.20 of the free-electron mass, respectively
Metal Insulator transition at B=0 in p-SiGe
Observations are reported of a metal-insulator transition in a 2D hole gas in
asymmetrically doped strained SiGe quantum wells. The metallic phase, which
appears at low temperatures in these high mobility samples, is characterised by
a resistivity that decreases exponentially with decreasing temperature. This
behaviour, and the duality between resistivity and conductivity on the two
sides of the transition, are very similar to that recently reported for high
mobility Si-MOSFETs.Comment: 4 pages, REVTEX with 3 ps figure
Plethora of transitions during breakup of liquid filaments.
Thinning and breakup of liquid filaments are central to dripping of leaky faucets, inkjet drop formation, and raindrop fragmentation. As the filament radius decreases, curvature and capillary pressure, both inversely proportional to radius, increase and fluid is expelled with increasing velocity from the neck. As the neck radius vanishes, the governing equations become singular and the filament breaks. In slightly viscous liquids, thinning initially occurs in an inertial regime where inertial and capillary forces balance. By contrast, in highly viscous liquids, initial thinning occurs in a viscous regime where viscous and capillary forces balance. As the filament thins, viscous forces in the former case and inertial forces in the latter become important, and theory shows that the filament approaches breakup in the final inertial-viscous regime where all three forces balance. However, previous simulations and experiments reveal that transition from an initial to the final regime either occurs at a value of filament radius well below that predicted by theory or is not observed. Here, we perform new simulations and experiments, and show that a thinning filament unexpectedly passes through a number of intermediate transient regimes, thereby delaying onset of the inertial-viscous regime. The new findings have practical implications regarding formation of undesirable satellite droplets and also raise the question as to whether similar dynamical transitions arise in other free-surface flows such as coalescence that also exhibit singularities.The authors thank Dr. Pankaj Doshi for several insightful discussions. This work was supported by the Basic Energy Sciences program of the US Department of Energy (DE-FG02-96ER14641), Procter & Gamble USA, the Chevron Corporation, the UK Engineering and Physical Sciences Research Council (Grant EP/H018913/1), the John Fell Oxford University Press Research Fund, and the Royal Society.This is the final published version. It first appeared via PNAS at http://dx.doi.org/10.1073/pnas.141854111
Determination of inorganic arsenic in water by a quartz crystal microbalance
A quartz crystal microbalance sensor has been developed for the determination of inorganic arsenic species in water. The gold electrode surface was modified by a self-assembled layer of dithiothreitol, and the frequency change of the modified crystal was proportional to the arsenic concentration from 0 to around 50 µg L-1, a range which spans the current US EPA maximum contaminent level of 10 µg L-1 in drinking water. As dithiothreitol is capable of reducing arsenate to arsenite, the sensor detects both species. The method was applied to the determination of arsenic in spiked rain, tap, pond and bottled water; recoveries not significantly different from 100% were obtained for a number of spike additions of less than 10 µg L -1. Arsenic was only detected in the bottled water sample, at a concentration of 8 µg L-1. This method is simple, fast, and inexpensive compared with other conventional arsenic detection methods, and has the potential to be used in the field. © 2013 The Royal Society of Chemistry
Forced Oscillations of Supported Drops
Oscillations of supported liquid drops are the subject of wide scientific interest, with applications in areas as diverse as liquid-liquid extraction, synthesis of ceramic powders, growing of pure crystals in low gravity, and measurement of dynamic surface tension. In this research, axisymmetric forced oscillations of arbitrary amplitude of viscous liquid drops of fixed volume which are pendant from or sessile on a rod with a fixed or moving contact line and surrounded by an inviscid ambient gas are induced by moving the rod in the vertical direction sinusiodally in time. In this paper, a preliminary report is made on the computational analysis of the oscillations of supported drops that have 'clean' interfaces and whose contact lines remain fixed throughout their motions. The relative importance of forcing to damping can be increased by either increasing the amplitude of rod motion A or Reynolds number Re. It is shown that as the ratio of forcing to damping rises, for drops starting from an initial rest state a sharp increase in deformation can occur when they are forced to oscillate in the vicinity of their resonance frequencies, indicating the incipience of hysteresis. However, it is also shown that the existence of a second stable limit cycle and the occurrence of hysteresis can be observed if the drop is subjected to a so-called frequency sweep, where the forcing frequency is first increased and then decreased over a suitable range. Because the change in drop deformation response is abrupt in the vicinity of the forcing frequencies where hysteresis occurs, it should be possible to exploit the phenomenon to accurately measure the viscosity and surface tension of the drop liquid
- …
