34 research outputs found

    Solvent-Free Biginelli Reactions Catalyzed by Hierarchical Zeolite Utilizing a Ball Mill Technique: A Green Sustainable Process

    Get PDF
    A sustainable, green one-pot process for the synthesis of dihydropyrimidinones (DHPMs) derivatives by a three-component reaction of β-ketoester derivatives, aldehyde and urea or thiourea over the alkali-treated H-ZSM-5 zeolite under ball-milling was developed. Isolation of the product with ethyl acetate shadowed by vanishing of solvent was applied. The hierachical zeolite catalyst (MFI27_6) showed high yield (86%–96%) of DHPMs in a very short time (10–30 min). The recyclability of the catalyst for the subsequent reactions was examined in four subsequent runs. The catalyst was shown to be robust without a detectable reduction in catalytic activity, and high yields of products showed the efficient protocol of the Biginelli reactions

    Self-decoration of Pt metal particles on TiO2 nanotubes used for highly efficient photocatalytic H2 production

    Get PDF
    Pt decorated TiO2 has, over the past decades, been a key material for photocatalytic hydrogen production. The present work shows that growing anodic self-organized TiO2 nanotubes from Ti–Pt alloy with a low Pt content of 0.2 at% leads to oxide nanotube layers that are self-decorated with Pt nanoparticles of 4–5 nm in diameter. The average particle spacing is in the range of ~50 nm and is partially adjustable by the anodization conditions. This intrinsic decoration of TiO2 nanotubes with Pt leads to a highly active photocatalyst for the production of H2 under UV or visible light conditions

    NH3 treatment of TiO2 nanotubes: from N-doping to semimetallic conductivity

    Get PDF
    In the present work we show that a suitable high temperature ammonia treatment allows for the conversion of single-walled TiO2 nanotube arrays not only to a N-doped photoactive anatase material (which is already well established), but even further into fully functional titanium nitride (TiN) tubular structures that exhibit semimetallic conductivity

    Hybrid effects in graphene oxide/carbon nanotube-supported Layered Double Hydroxides: Enhancing the CO₂ sorption properties

    Get PDF
    Graphene oxide (GO) and multi-walled carbon nanotubes (MWCNT) have been previously used independently as active supports for Layered Double Hydroxides (LDH), and found to enhance the intrinsic CO₂ sorption capacity of the adsorbents. However, the long-term stability of the materials subjected to temperature-swing adsorption (TSA) cycles still requires improvement. In this contribution, GO and MWCNT are hybridized to produce mixed substrates with improved surface area and compatibility for the deposition of LDH platelets, compared to either phase alone. The incorporation of a robust and thoroughly hybridized carbon network considerably enhances the thermal stability of activated, promoted LDH over twenty cycles of gas adsorption-desorption (96% of retention of the initial sorption capacity at the 20th cycle), dramatically reducing the sintering previously observed when either GO or MWCNT were added separately. Detailed characterization of the morphology of the supported LDH, at several stages of the multicycle adsorption process, shows that the initial morphology of the adsorbents is more strongly retained when supported on the robust hybrid GO/MWCNT network; the CO₂ adsorption performance correlates closely with the specific surface area of the adsorbents, with both maximized at small loadings of a 1:1 ratio of GO:MWCNT substrate

    H-ZSM-5 Materials Embedded in an Amorphous Silica Matrix: Highly Selective Catalysts for Propylene in Methanol-to-Olefin Process

    No full text
    H-ZSM-5 materials embedded in an amorphous silica were successfully synthesized with three different Si/Al ratios (i.e., 40, 45, and 50). The presence of the MFI structure in the synthesized samples was confirmed by X-ray diffraction (XRD), Fourier transform infra-red (FT-IR), and solid state-nuclear magnetic resonance (SSNMR) techniques. The morphology and textural properties of the samples were investigated by scanning electron microscopy (SEM), TEM, and N2-physisorption measurements. Furthermore, acidic properties of the synthesized catalysts have been studied by NH3-TPD and FT-IR spectroscopy of CO adsorption studies. Variation of the Si/Al ratio affected the crystal morphology, porosity, and particle size, as well as the strength and distribution of acid sites. The synthesized zeolite materials possessed low acid-site density and exhibited high catalytic activity in the methanol-to-olefin (MTO) reaction. To study the intermediate species responsible for catalyst deactivation, the MTO reaction was carried out at high temperature (500 °C) to accelerate catalyst deactivation. Interestingly, the synthesized catalysts offered high selectivity towards the formation of propylene (C3=), in comparison to a commercial microporous crystalline H-ZSM-5 with Si/Al = 40, under the same reaction conditions. The synthesized H-ZSM-5 materials offered a selectivity ratio of C3=/C2= 12, while it is around 2 for the commercial H-ZSM-5 sample. The formation of hydrocarbon species during MTO reaction over zeolite samples has been systematically studied with operando UV-vis spectroscopy and online gas chromatography. It is proposed that the strength and type of acid sites of catalyst play a role in propylene selectivity as well as the fast growing of active intermediate species. The effective conversion of methanol into propylene in the case of synthesized H-ZSM-5 materials was observed due to possession of weak acid sites. This effect is more pronounced in H-ZSM-5 sample with a Si/Al ratio of 45

    Divalent Transition Metals Substituted LaFeO3 Perovskite Catalyst for Nitrous Oxide Decomposition

    Get PDF
    Divalent transition metals substituted LaFeO3 type perovskite catalysts (LaFe0.95M0.05O3 with M= Cu2+ and Ni2+) were synthesized by hydrothermal method and characterized by using X-ray diffraction (XRD), temperature programmed reduction with H2 (H2-TPR) and N2-physisorption techniques. The catalytic activity of the catalysts was tested for N2O decomposition reaction. Enhancement in the catalytic activity was observed after substitution of Cu and Ni metal ions into LaFeO3 framework. LaFe0.95Ni0.05O3 showed higher catalytic activity than LaFeO3 and LaFe0.95Cu0.05O3 catalysts. The plausible reason for the increased activity is that LaFe0.95Ni0.05O3 sample possessed high oxygen mobility than the other two samples

    Supported Zeolite Beta Layers via an Organic Template-Free Preparation Route

    No full text
    Layers of high silica zeolites, synthesized with an organic structure directing agent (OSDA) and grown onto porous support structures, frequently suffer from the thermal stress during the removal of OSDA via the calcination process. The different thermal expansion coefficients of the zeolite and the support material, especially when stainless steel is used as a support, causes enormous tension resulting in defect formation in the zeolite layer. However, the calcination is an easy procedure to decompose the OSDA in the pore system of the zeolite. Recently, methods to synthesize zeolite beta without the use of an organic structure directing agent have been described. In the present study, a seed-directed synthesis is used to prepare OSDA-free zeolite beta layers on stainless steel supports via an in situ preparation route. For the application as membrane, a porous stainless steel support has been chosen. The beta/stainless steel composites are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To prove its possible application as a membrane, the beta/stainless steel composites were also tested by single gas permeances of H2, He, CO2, N2, and CH4

    Solvent-Free Biginelli Reactions Catalyzed by Hierarchical Zeolite Utilizing a Ball Mill Technique: A Green Sustainable Process

    No full text
    A sustainable, green one-pot process for the synthesis of dihydropyrimidinones (DHPMs) derivatives by a three-component reaction of β-ketoester derivatives, aldehyde and urea or thiourea over the alkali-treated H-ZSM-5 zeolite under ball-milling was developed. Isolation of the product with ethyl acetate shadowed by vanishing of solvent was applied. The hierachical zeolite catalyst (MFI27_6) showed high yield (86%–96%) of DHPMs in a very short time (10–30 min). The recyclability of the catalyst for the subsequent reactions was examined in four subsequent runs. The catalyst was shown to be robust without a detectable reduction in catalytic activity, and high yields of products showed the efficient protocol of the Biginelli reactions

    Physico-Chemical and Catalytic Properties of Mesoporous CuO-ZrO2 Catalysts

    No full text
    Mesoporous CuO-ZrO2 catalysts were prepared and calcined at 500 °C. The performance of the synthesized catalysts for benzylation of benzene using benzyl chloride was studied. The bare support (macroporous ZrO2) offered 45% benzyl chloride conversion after reaction time of 10 h at 75 °C. Significant increase in benzyl chloride conversion (98%) was observed after CuO loading (10 wt. %) on porous ZrO2 support. The conversion was decreased to 80% with increase of CuO loading to 20 wt. %. Different characterization techniques (XRD, Raman, diffuse reflectance UV-vis, N2-physisorption, H2-TPR, XPS and acidity measurements) were used to evaluate physico-chemical properties of CuO-ZrO2 catalysts; the results showed that the surface and structural characteristics of the ZrO2 phase as well as the interaction between CuO-ZrO2 species depend strongly on the CuO content. The results also indicated that ZrO2 support was comprised of monoclinic and tetragonal phases with macropores. An increase of the volume of monoclinic ZrO2 phase was observed after impregnation of 10 wt. % of CuO; however, stabilization of tetragonal ZrO2 phase was noticed after loading of 20 wt. % CuO. The presence of low-angle XRD peaks indicates that mesoscopic order is preserved in the calcined CuO-ZrO2 catalysts. XRD reflections due to CuO phase were not observed in case of 10 wt. % CuO supported ZrO2 sample; in contrast, the presence of crystalline CuO phase was observed in 20 wt. % CuO supported ZrO2 sample. The mesoporous 10 wt. % CuO supported ZrO2 catalyst showed stable catalytic activity for several reaction cycles. The observed high catalytic activity of this catalyst could be attributed to the presence of a higher number of dispersed interactive CuO (Cu2+-O-Zr4+) species, easy reducibility, and greater degree of accessible surface Lewis acid sites

    Self-decoration of Pt metal particles on TiO2 nanotubes used for highly efficient photocatalytic H2 production

    No full text
    Pt decorated TiO2 has, over the past decades, been a key material for photocatalytic hydrogen production. The present work shows that growing anodic self-organized TiO2 nanotubes from Ti–Pt alloy with a low Pt content of 0.2 at% leads to oxide nanotube layers that are self-decorated with Pt nanoparticles of 4–5 nm in diameter. The average particle spacing is in the range of ~50 nm and is partially adjustable by the anodization conditions. This intrinsic decoration of TiO2 nanotubes with Pt leads to a highly active photocatalyst for the production of H2 under UV or visible light conditions
    corecore