96 research outputs found
Optimal behavior of responsive residential demand considering hybrid phase change materials
Due to communication and technology developments, residential consumers are enabled to participate in Demand Response Programs (DRPs), control their consumption and decrease their cost by using Household Energy Management (HEM) systems. On the other hand, capability of energy storage systems to improve the energy efficiency causes that employing Phase Change Materials (PCM) as thermal storage systems to be widely addressed in the building applications. In this paper, an operational model of HEM system considering the incorporation of more than one type of PCM in plastering mortars (hybrid PCM) is proposed not only to minimize the customerâ s cost in different DRPs but also to guaranty the habitantsâ  satisfaction. Moreover, the proposed model ensures the technical and economic limits of batteries and electrical appliances. Different case studies indicate that implementation of hybrid PCM in the buildings can meaningfully affect the operational pattern of HEM systems in different DRPs. The results reveal that the customerâ s electricity cost can be reduced up to 48% by utilizing the proposed model.The work of M. Shafie-khah and J.P.S. Catalão was supported by
FEDER funds through COMPETE and by Portuguese funds through FCT, under FCOMP-01-0124-FEDER-020282 (Ref. PTDC/EEA-EEL/118519/2010) and UID/CEC/50021/2013, and also by the EU 7th Framework Programme FP7/2007-2013 under Grant agreement No. 309048 (project SiNGULAR)
Expected Performances of the NOMAD/ExoMars instrument
NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers – SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in [Vandaele et al., Optics Express, 2015] and [Thomas et al., Optics Express, 2015], the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, H2O, HDO, C2H2, C2H4, C2H6, H2CO, CH4, SO2, H2S, HCl, HCN, HO2, NH3, N2O, NO2, OCS, O3. NOMAD should have the ability to measure methane concentrations <25 parts per trillion (ppt) in solar occultation mode, and 11 parts per billion in nadir mode. Occultation detections as low as 10 ppt could be made if spectra are averaged [Drummond et al., Planetary Space and Science, 2011]. Results have been obtained for all three channels in nadir and in solar occultation
SARS-CoV-2 seroprevalence among a southern U.S. population indicates limited asymptomatic spread under physical distancing measures
Characterizing the asymptomatic spread of SARS-CoV-2 is important for understanding the COVID-19 pandemic. This study was aimed at determining asymptomatic spread of SARS-CoV-2 in a suburban, Southern U.S. population during a period of state restrictions and physical distancing mandates. This is one of the first published seroprevalence studies from North Carolina and included multicenter, primary care, and emergency care facilities serving a low-density, suburban and rural population since description of the North Carolina state index case introducing the SARS-CoV-2 respiratory pathogen to this population. To estimate point seroprevalence of SARS-CoV-2 among asymptomatic individuals over time, two cohort studies were examined. The first cohort study, named ScreenNC, was comprised of outpatient clinics, and the second cohort study, named ScreenNC2, was comprised of inpatients unrelated to COVID-19. Asymptomatic infection by SARS-CoV-2 (with no clinical symptoms) was examined using an Emergency Use Authorization (EUA)-approved antibody test (Abbott) for the presence of SARS-CoV-2 IgG. This assay as performed under CLIA had a reported specificity/sensitivity of 100%/99.6%. ScreenNC identified 24 out of 2,973 (0.8%) positive individuals among asymptomatic participants accessing health care during 28 April to 19 June 2020, which was increasing over time. A separate cohort, ScreenNC2, sampled from 3 March to 4 June 2020, identified 10 out of 1,449 (0.7%) positive participants. IMPORTANCE This study suggests limited but accelerating asymptomatic spread of SARS-CoV-2. Asymptomatic infections, like symptomatic infections, disproportionately affected vulnerable communities in this population, and seroprevalence was higher in African American participants than in White participants. The low, overall prevalence may reflect the success of shelter-in-place mandates at the time this study was performed and of maintaining effective physical distancing practices among suburban populations. Under these public health measures and aggressive case finding, outbreak clusters did not spread into the general population
Recommended from our members
Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD
It has been suggested that dust storms efficiently transport water vapor from the near‐surface to the middle atmosphere on Mars. Knowledge of the water vapor vertical profile during dust storms is important to understand water escape. During Martian Year 34, two dust storms occurred on Mars: a global dust storm (June to mid‐September 2018) and a regional storm (January 2019). Here we present water vapor vertical profiles in the periods of the two dust storms (Ls = 162–260° and Ls = 298–345°) from the solar occultation measurements by Nadir and Occultation for Mars Discovery (NOMAD) onboard ExoMars Trace Gas Orbiter (TGO). We show a significant increase of water vapor abundance in the middle atmosphere (40–100 km) during the global dust storm. The water enhancement rapidly occurs following the onset of the storm (Ls~190°) and has a peak at the most active period (Ls~200°). Water vapor reaches very high altitudes (up to 100 km) with a volume mixing ratio of ~50 ppm. The water vapor abundance in the middle atmosphere shows high values consistently at 60°S‐60°N at the growth phase of the dust storm (Ls = 195°–220°), and peaks at latitudes greater than 60°S at the decay phase (Ls = 220°–260°). This is explained by the seasonal change of meridional circulation: from equinoctial Hadley circulation (two cells) to the solstitial one (a single pole‐to‐pole cell). We also find a conspicuous increase of water vapor density in the middle atmosphere at the period of the regional dust storm (Ls = 322–327°), in particular at latitudes greater than 60°S
Evaluation of a COVID-19 convalescent plasma program at a U.S. academic medical center
Amidst the therapeutic void at the onset of the COVID-19 pandemic, a critical mass of scientific and clinical interest coalesced around COVID-19 convalescent plasma (CCP). To date, the CCP literature has focused largely on safety and efficacy outcomes, but little on implementation outcomes or experience. Expert opinion suggests that if CCP has a role in COVID-19 treatment, it is early in the disease course, and it must deliver a sufficiently high titer of neutralizing antibodies (nAb). Missing in the literature are comprehensive evaluations of how local CCP programs were implemented as part of pandemic preparedness and response, including considerations of the core components and personnel required to meet demand with adequately qualified CCP in a timely and sustained manner. To address this gap, we conducted an evaluation of a local CCP program at a large U.S. academic medical center, the University of North Carolina Medical Center (UNCMC), and patterned our evaluation around the dimensions of the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework to systematically describe key implementation-relevant metrics. We aligned our evaluation with program goals of reaching the target population with severe or critical COVID-19, integrating into the structure of the hospital-wide pandemic response, adapting to shifting landscapes, and sustaining the program over time during a compassionate use expanded access program (EAP) era and a randomized controlled trial (RCT) era. During the EAP era, the UNCMC CCP program was associated with faster CCP infusion after admission compared with contemporaneous affiliate hospitals without a local program: median 29.6 hours (interquartile range, IQR: 21.2–48.1) for the UNCMC CCP program versus 47.6 hours (IQR 32.6–71.6) for affiliate hospitals; (P<0.0001). Sixty-eight of 87 CCP recipients in the EAP (78.2%) received CCP containing the FDA recommended minimum nAb titer of ≥1:160. CCP delivery to hospitalized patients operated with equal efficiency regardless of receiving treatment via a RCT or a compassionate-use mechanism. It was found that in a highly resourced academic medical center, rapid implementation of a local CCP collection, treatment, and clinical trial program could be achieved through redeployment of highly trained laboratory and clinical personnel. These data provide important pragmatic considerations critical for health systems considering the use of CCP as part of an integrated pandemic response
- …