29 research outputs found

    Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery

    Get PDF
    Breast cancer is the most common cancer in women worldwide, and the development of new technologies for better understanding of the molecular changes involved in breast cancer progression is essential. Metabolic changes precede overt phenotypic changes, because cellular regulation ultimately affects the use of small-molecule substrates for cell division, growth or environmental changes such as hypoxia. Differences in metabolism between normal cells and cancer cells have been identified. Because small alterations in enzyme concentrations or activities can cause large changes in overall metabolite levels, the metabolome can be regarded as the amplified output of a biological system. The metabolome coverage in human breast cancer tissues can be maximized by combining different technologies for metabolic profiling. Researchers are investigating alterations in the steady state concentrations of metabolites that reflect amplified changes in genetic control of metabolism. Metabolomic results can be used to classify breast cancer on the basis of tumor biology, to identify new prognostic and predictive markers and to discover new targets for future therapeutic interventions. Here, we examine recent results, including those from the European FP7 project METAcancer consortium, that show that integrated metabolomic analyses can provide information on the stage, subtype and grade of breast tumors and give mechanistic insights. We predict an intensified use of metabolomic screens in clinical and preclinical studies focusing on the onset and progression of tumor development

    The Community Ecology of Microbial Molecules

    No full text

    Effects of exposure to water Disinfection By-Products in a swimming pool: A metabolome-wide association study

    No full text
    Background Exposure to disinfection by-products (DBPs) in drinking water and chlorinated swimming pools are associated with adverse health outcomes, but biological mechanisms remain poorly understood. Objectives Evaluate short-term changes in metabolic profiles in response to DBP exposure while swimming in a chlorinated pool. Materials and methods The PISCINA-II study (EXPOsOMICS project) includes 60 volunteers swimming 40 min in an indoor pool. Levels of most common DBPs were measured in water and in exhaled breath before and after swimming. Blood samples, collected before and 2 h after swimming, were used for metabolic profiling by liquid-chromatography coupled to high-resolution mass-spectrometry. Metabolome-wide association between DBP exposures and each metabolic feature was evaluated using multivariate normal (MVN) models. Sensitivity analyses and compound annotation were conducted. Results Exposure levels of all DBPs in exhaled breath were higher after the experiment. A total of 6,471 metabolic features were detected and 293 features were associated with at least one DBP in exhaled breath following Bonferroni correction. A total of 333 metabolic features were associated to at least one DBP measured in water or urine. Uptake of DBPs and physical activity were strongly correlated and mutual adjustment reduced the number of statistically significant associations. From the 293 features, 20 could be identified corresponding to 13 metabolites including compounds in the tryptophan metabolism pathway. Conclusion Our study identified numerous molecular changes following a swim in a chlorinated pool. While we could not explicitly evaluate which experiment-related factors induced these associations, molecular characterization highlighted metabolic features associated with exposure changes during swimming

    Dietary flavonoid intake and colorectal cancer risk in the European prospective investigation into cancer and nutrition (EPIC) cohort.

    No full text
    Flavonoids have been shown to inhibit colon cancer cell proliferation in vitro and protect against colorectal carcinogenesis in animal models. However, epidemiological evidence on the potential role of flavonoid intake in colorectal cancer (CRC) development remains sparse and inconsistent. We evaluated the association between dietary intakes of total flavonoids and their subclasses and risk of development of CRC, within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. A cohort of 477,312 adult men and women were recruited in 10 European countries. At baseline, dietary intakes of total flavonoids and individual subclasses were estimated using centre-specific validated dietary questionnaires and composition data from the Phenol-Explorer database. During an average of 11 years of follow-up, 4,517 new cases of primary CRC were identified, of which 2,869 were colon (proximal = 1,298 and distal = 1,266) and 1,648 rectal tumours. No association was found between total flavonoid intake and the risk of overall CRC (HR for comparison of extreme quintiles 1.05, 95% CI 0.93-1.18; p-trend = 0.58) or any CRC subtype. No association was also observed with any intake of individual flavonoid subclasses. Similar results were observed for flavonoid intake expressed as glycosides or aglycone equivalents. Intake of total flavonoids and flavonoid subclasses, as estimated from dietary questionnaires, did not show any association with risk of CRC development.The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l'Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); German Cancer Aid, German Cancer Research Center (DKFZ), Federal Ministry of Education and Research (BMBF), Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); European Research Council (ERC-2009-AdG 232997); Health Research Fund (FIS): PI13/00061 to Granada; PI13/01162 to EPIC-Murcia, Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, AGAUR, Generalitat de Catalunya (exp. 2014 SGR 726), The Health Research Funds RD12/0036/0018; cofunded by European Regional Development Fund (ERDF) “A way to build Europe (Spain); Swedish Cancer Society, Swedish Research Council and County Councils of Skåne and Västerbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; C570/A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford) (United Kingdom). RZ-R would like to thank the “Miguel Servet” program (CP15/00100) from the Institute of Health Carlos III and European Social Fund (ESF)
    corecore