213 research outputs found

    Towards a high precision calculation for the pion-nucleus scattering lengths

    Get PDF
    We calculate the leading isospin conserving few-nucleon contributions to pion scattering on 2^2H, 3^3He, and 4^4He. We demonstrate that the strong contributions to the pion-nucleus scattering lengths can be controlled theoretically to an accuracy of a few percent for isoscalar nuclei and of 10% for isovector nuclei. In particular, we find the π\pi-3^3He scattering length to be (62±4±7)×103mπ1(62 \pm 4\pm 7)\times 10^{-3} m_{\pi}^{-1} where the uncertainties are due to ambiguities in the π\pi-N scattering lengths and few-nucleon effects, respectively. To establish this accuracy we need to identify a suitable power counting for pion-nucleus scattering. For this purpose we study the dependence of the two-nucleon contributions to the scattering length on the binding energy of 2^2H. Furthermore, we investigate the relative size of the leading two-, three-, and four-nucleon contributions. For the numerical evaluation of the pertinent integrals, aMonte Carlo method suitable for momentum space is devised. Our results show that in general the power counting suggested by Weinberg is capable to properly predict the relative importance of NN-nucleon operators, however, it fails to capture the relative strength of NN- and (N+1)(N+1)-nucleon operators, where we find a suppression by a factor of 5 compared to the predicted factor of 50. The relevance for the extraction of the isoscalar π\pi-N scattering length from pionic 2^2H and 4^4He is discussed. As a side result, we show that beyond the calculation of the π\pi-2^2H scattering length is already beyond the range of applicability of heavy pion effective field theory.Comment: 24 pages, 14 figures, 10 table

    Interplay of quark and meson degrees of freedom in a near-threshold resonance

    Get PDF
    We investigate the interplay of quark and meson degrees of freedom in a physical state representing a near-threshold resonance for the case of a single continuum channel. We demonstrate that such a near-threshold resonance may possess quite peculiar properties if both quark and meson dynamics generate weakly coupled near-threshold poles in the S-matrix. In particular, the scattering t-matrix may possess zeros in this case. We also discuss possible implications for production reactions as well as studies within lattice QCD.Comment: LaTeX2e, 11 pages, minor typo corrections, to appear in Eur.Phys.J.

    Chiral corrections to the isovector double scattering term for the pion-deuteron scattering length

    Full text link
    The empirical value of the real part of the pion-deuteron scattering length can be well understood in terms of the dominant isovector πN\pi N-double scattering contribution. We calculate in chiral perturbation theory all one-pion loop corrections to this double scattering term which in the case of πN\pi N-scattering close the gap between the current-algebra prediction and the empirical value of the isovector threshold T-matrix TπNT_{\pi N}^-. In addition to closing this gap there is in the πd\pi d-system a loop-induced off-shell correction for the exchanged virtual pion. Its coordinate space representation reveals that it is equivalent to 2π2\pi-exchange in the deuteron. We evaluate the chirally corrected double scattering term and the off-shell contribution with various realistic deuteron wave functions. We find that the off-shell correction contributes at most -8% and that the isovector double scattering term explains at least 90% of the empirical value of the real part of the πd\pi d-scattering length.Comment: 4 pages, 2 figures, to be published in The Physical Review

    Phenomenology of pp->pp eta reaction close to threshold

    Full text link
    The recent high statistics measurement of the pp -> pp eta reaction at an excess energy Q=15.5 MeV has been analysed by means of partial wave decomposition of the cross section. Guided by the dominance of the final state 1S0 pp interaction (FSI), we keep only terms involving the FSI enhancement factor. The measured p-p and p-eta effective mass spectra can be well reproduced by lifting the standard on-shell approximation in the enhancement factor and by allowing for a linear energy dependence in the leading 3P0->1S0,s partial wave amplitude. Higher partial waves seem to play only a marginal role

    Production of a0a_0-mesons in pp and pn reactions

    Full text link
    We investigate the cross section for the reaction NNNNa0NN \to NNa_0 near threshold and at medium energies. An effective Lagrangian approach with one-pion exchange is applied to analyze different contributions to the cross section for different isospin channels. The Reggeon exchange mechanism is also considered. The results are used to calculate the contribution of the a0a_0 meson to the cross sections and invariant KKˉK \bar K mass distributions of the reactions pppnK+Kˉ0pp\to pn K^+\bar K^0 and ppppK+Kpp\to pp K^+K^-. It is found that the experimental observation of a0+a_0^+ mesons in the reaction pppnK+Kˉ0pp\to pn K^+\bar K^0 is much more promising than the observation of a00a_0^0 mesons in the reaction ppppK+Kpp\to pp K^+K^-.Comment: 26 pages, including 11 eps figures, to be bublished in J. Phys.

    Threshold neutral pion photoproduction off the tri-nucleon to O(q^4)

    Get PDF
    We calculate electromagnetic neutral pion production off tri-nucleon bound states (3H, 3He) at threshold in chiral nuclear effective field theory to fourth order in the standard heavy baryon counting. We show that the fourth order two-nucleon corrections to the S-wave multipoles at threshold are very small. This implies that a precise measurement of the S-wave cross section for neutral pion production off 3He allows for a stringent test of the chiral perturbation theory prediction for the S-wave electric multipole E_{0+}^{pi0 n}.Comment: 17 pages, 5 figures, title changed, final version to appear in EPJA. arXiv admin note: substantial text overlap with arXiv:1103.340

    Charge Symmetry Violation Effects in Pion Scattering off the Deuteron

    Full text link
    We discuss the theoretical and experimental situations for charge symmetry violation (CSV) effects in the elastic scattering of pi+ and pi- on deuterium (D) and 3He/3H. Accurate comparison of data for both types of targets provides evidence for the presence of CSV effects. While there are indications of a CSV effect in deuterium, it is much more pronounced in the case of 3He/3H. We provide a description of the CSV effect on the deuteron in terms of single- and double- scattering amplitudes. The Delta-mass splitting is taken into account. Theoretical predictions are compared with existing experimental data for pi-d scattering; a future article will speak to the pi-three nucleon case.Comment: 16 pages of RevTeX, 7 postscript figure

    Study of the ρ\rho, ω\omega, ϕηγ7γ\phi\to\eta\gamma\to 7\gamma Decays with an SND Detector on a VEPP-2M Collider

    Full text link
    The e+eηγ7γe^+e^-\to\eta\gamma\to 7\gamma process was studied in the energy range 2E=600÷10602E=600\div 1060 MeV with an SND detector on a VEPP-2M e+ee^+e^- collider. The decay branching ratios B(ϕηγ)=(1.343±0.012±0.055)102B(\phi\to\eta\gamma)=(1.343\pm 0.012\pm 0.055)\cdot 10^{-2}, B(ωηγ)=(4.60±0.72±0.19)104B(\omega\to\eta\gamma)=(4.60\pm 0.72\pm 0.19)\cdot 10^{-4}, and B(ρηγ)=(2.69±0.32±0.16)104B(\rho\to\eta\gamma)=(2.69\pm 0.32\pm 0.16)\cdot 10^{-4} were measured.Comment: 5 pages, 4 figure

    Chiral perturbation theory calculation for pn -> dpipi at threshold

    Get PDF
    We investigate the reaction pn -> dpipi in the framework of Chiral Perturbation Theory. For the first time a complete calculation of the leading order contributions is presented. We identify various diagrams that are of equal importance as compared to those recognized in earlier works. The diagrams at leading order behave as expected by the power counting. Also for the first time the nucleon-nucleon interaction in the initial, intermediate and final state is included consistently and found to be very important. This study provides a theoretical basis for a controlled evaluation of the non-resonant contributions in two-pion production reactions in nucleon-nucleon collisions.Comment: 24 pages, 3 figures, 3 table

    Dynamical coupled-channel approaches on a momentum lattice

    Get PDF
    Dynamical coupled-channel approaches are a widely used tool in hadronic physics that allow to analyze different reactions and partial waves in a consistent way. In such approaches the basic interactions are derived within an effective Lagrangian framework and the resulting pseudo-potentials are then unitarized in a coupled-channel scattering equation. We propose a scheme that allows for a solution of the arising integral equation in discretized momentum space for periodic as well as twisted boundary conditions. This permits to study finite size effects as they appear in lattice QCD simulations. The new formalism, at this stage with a restriction to S-waves, is applied to coupled-channel models for the sigma(600), f0(980), and a0(980) mesons, and also for the Lambda(1405) baryon. Lattice spectra are predicted.Comment: 7 pages, 4 figure
    corecore