31 research outputs found

    Numerical Modeling of Magnetic Field Deformation as Related to Susceptibility Measured with an MR System

    Get PDF
    The possibility is studied of numerical modeling of magnetic field deformations in the environment of measured diamagnetic and paramagnetic samples for the purposes of studying magnetic resonance (MR) image deformations owing to the susceptibility of heterogeneous materials (objects). The verification was realized using a simple sample configuration (circular plate), and the numerically modeled cross-sections were compared with the experimentally obtained values of the magnetic field measured by the MR gradient echo technology. The results show that it is possible – via a technical calculation – to determine a magnetic field deformation in the environment of complex-shaped or non-homogeneous structures in the MR experiments

    NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission

    Get PDF
    The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO's on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes

    Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report

    Get PDF
    This report describes the 2014 study by the Science Definition Team (SDT) of the Wide-Field Infrared Survey Telescope (WFIRST) mission. It is a space observatory that will address the most compelling scientific problems in dark energy, exoplanets and general astrophysics using a 2.4-m telescope with a wide-field infrared instrument and an optical coronagraph. The Astro2010 Decadal Survey recommended a Wide Field Infrared Survey Telescope as its top priority for a new large space mission. As conceived by the decadal survey, WFIRST would carry out a dark energy science program, a microlensing program to determine the demographics of exoplanets, and a general observing program utilizing its ultra wide field. In October 2012, NASA chartered a Science Definition Team (SDT) to produce, in collaboration with the WFIRST Study Office at GSFC and the Program Office at JPL, a Design Reference Mission (DRM) for an implementation of WFIRST using one of the 2.4-m, Hubble-quality telescope assemblies recently made available to NASA. This DRM builds on the work of the earlier WFIRST SDT, reported by Green et al. (2012) and the previous WFIRST-2.4 DRM, reported by Spergel et. (2013). The 2.4-m primary mirror enables a mission with greater sensitivity and higher angular resolution than the 1.3-m and 1.1-m designs considered previously, increasing both the science return of the primary surveys and the capabilities of WFIRST as a Guest Observer facility. The addition of an on-axis coronagraphic instrument to the baseline design enables imaging and spectroscopic studies of planets around nearby stars.Comment: This report describes the 2014 study by the Science Definition Team of the Wide-Field Infrared Survey Telescope mission. 319 pages; corrected a misspelled name in the authors list and a typo in the abstrac

    Obfuscated Fuzzy Hamming Distance and Conjunctions from Subset Product Problems

    Get PDF
    We consider the problem of obfuscating programs for fuzzy matching (in other words, testing whether the Hamming distance between an nn-bit input and a fixed nn-bit target vector is smaller than some predetermined threshold). This problem arises in biometric matching and other contexts. We present a virtual-black-box (VBB) secure and input-hiding obfuscator for fuzzy matching for Hamming distance, based on certain natural number-theoretic computational assumptions. In contrast to schemes based on coding theory, our obfuscator is based on computational hardness rather than information-theoretic hardness, and can be implemented for a much wider range of parameters. The Hamming distance obfuscator can also be applied to obfuscation of matching under the 1\ell_1 norm on Zn\mathbb{Z}^n. We also consider obfuscating conjunctions. Conjunctions are equivalent to pattern matching with wildcards, which can be reduced in some cases to fuzzy matching. Our approach does not cover as general a range of parameters as other solutions, but it is much more compact. We study the relation between our obfuscation schemes and other obfuscators and give some advantages of our solution

    The Multi-Base Discrete Logarithm Problem: Tight Reductions and Non-Rewinding Proofs for Schnorr Identification and Signatures

    Get PDF
    We introduce the Multi-Base Discrete Logarithm (MBDL) problem. We use this to give reductions, for Schnorr and Okamoto identification and signatures, that are non-rewinding and, by avoiding the notorious square-root loss, tighter than the classical ones from the Discrete Logarithm (DL) problem. This fills a well-known theoretical and practical gap regarding the security of these schemes. We show that not only is the MBDL problem hard in the generic group model, but with a bound that matches that for DL, so that our new reductions justify the security of these primitives for group sizes in actual use

    Are early somatic embryos of the norway spruce (Picea abies (L.) Karst.) organised?

    Get PDF
    Background Somatic embryogenesis in conifer species has great potential for the forestry industry. Hence, a number of methods have been developed for their efficient and rapid propagation through somatic embryogenesis. Although information is available regarding the previous process-mediated generation of embryogenic cells to form somatic embryos, there is a dearth of information in the literature on the detailed structure of these clusters. Methodology/Principal Findings The main aim of this study was to provide a more detailed structure of the embryogenic tissue clusters obtained through the in vitro propagation of the Norway spruce (Picea abies (L.) Karst.). We primarily focused on the growth of early somatic embryos (ESEs). The data on ESE growth suggested that there may be clear distinctions between their inner and outer regions. Therefore, we selected ESEs collected on the 56th day after sub-cultivation to dissect the homogeneity of the ESE clusters. Two colourimetric assays (acetocarmine and fluorescein diacetate/propidium iodide staining) and one metabolic assay based on the use of 2,3,5-triphenyltetrazolium chloride uncovered large differences in the metabolic activity inside the cluster. Next, we performed nuclear magnetic resonance measurements. The ESE cluster seemed to be compactly aggregated during the first four weeks of cultivation; thereafter, the difference between the 1H nuclei concentration in the inner and outer clusters was more evident. There were clear differences in the visual appearance of embryos from the outer and inner regions. Finally, a cluster was divided into six parts (three each from the inner and the outer regions of the embryo) to determine their growth and viability. The innermost embryos (centripetally towards the cluster centre) could grow after sub-cultivation but exhibited the slowest rate and required the longest time to reach the common growth rate. To confirm our hypothesis on the organisation of the ESE cluster, we investigated the effect of cluster orientation on the cultivation medium and the influence of the change of the cluster’s three-dimensional orientation on its development. Maintaining the same position when transferring ESEs into new cultivation medium seemed to be necessary because changes in the orientation significantly affected ESE growth. Conclusions and Significance This work illustrated the possible inner organisation of ESEs. The outer layer of ESEs is formed by individual somatic embryos with high metabolic activity (and with high demands for nutrients, oxygen and water), while an embryonal group is directed outside of the ESE cluster. Somatic embryos with depressed metabolic activity were localised in the inner regions, where these embryonic tissues probably have a very important transport function

    Optimisation of the Transient response of a Digital Filter

    No full text
    The paper presents a theoretical analysis of the method that enables optimisation of the transient response of a digital filter or of an arbitrary discrete system, by pre-setting the initial conditions of the inner state description. For a particular design of a filter, it is enough to once evaluate coefficients, multiply them by the magnitude of the first sample of the signal and do filtration by using these initial conditions. The method was verified using the simulated, and NMR signals to maintain spectrum baselines correction, and will also be used for the study of an optimum filtration of the NMR signal with a variable instantaneous frequency

    Optimization of Wavelet-Based De-noising in MRI

    Get PDF
    In the paper, a method for MR image enhancement using the wavelet analysis is described. The wavelet analysis is concentrated on the influence of threshold level and mother wavelet choices on the resultant MR image. The influence is expressed by the measurement and mutual comparison of three MT image parameters: signal to noise ratio, image contrast, and linear slope edge approximation. Unlike most standard methods working exclusively with the MR image magnitude, in our case both the MR image magnitude and the MR image phase were used in the enhancement process. Some recommendations are mentioned in conclusion, such as how to use a combination of mother wavelets with threshold levels for various types of MR images

    Comparing Saddle, Slotted-tube and Parallel-plate Coils for Magnetic Resonance Imaging

    No full text
    The paper is concerned with a comparison of the properties of RF coils of three configurations for MRI measurements on small animals. In comparison with the classical saddle coil the proposed modification of slotted-tube coil exhibits identical homogeneity of B1 field in a larger space. The parallel-plate coil has a satisfactory homogeneity of B1 field over the whole internal space. The signal-to-noise ratio measured for all three coils is roughly the same and is given by the magnitude of RF pre-amplifier noise. As the slotted-tube and parallel-plate coils have a lower inductance compared with the saddle coil, they can be tuned to resonance on the 200 MHz frequency even at larger dimensions. The results show that the parallel-plate coil has very good properties for the measurement of small animals
    corecore