174 research outputs found

    Water penetration profile at the protein-lipid interface in Na,K-ATPase membranes.

    Get PDF
    The affinity of ionized fatty acids for the Na,K-ATPase is used to determine the transmembrane profile of water penetration at the protein-lipid interface. The standardized intensity of the electron spin echo envelope modulation (ESEEM) from 2H-hyperfine interaction with D2O is determined for stearic acid, n-SASL, spin-labeled systematically at the C-n atoms throughout the chain. In both native Na,K-ATPase membranes from shark salt gland and bilayers of the extracted membrane lipids, the D2O-ESEEM intensities of fully charged n-SASL decrease progressively with position down the fatty acid chain toward the terminal methyl group. Whereas the D2O intensities decrease sharply at the n = 9 position in the lipid bilayers, a much broader transition region in the range n = 6 to 10 is found with Na,K-ATPase membranes. Correction for the bilayer population in the membranes yields the intrinsic D2O-intensity profile at the protein-lipid interface. For positions at either end of the chains, the D2O concentrations at the protein interface are greater than in the lipid bilayer, and the positional profile is much broader. This reveals the higher polarity, and consequently higher intramembrane water concentration, at the protein-lipid interface. In particular, there is a significant water concentration adjacent to the protein at the membrane midplane, unlike the situation in the bilayer regions of this cholesterol-rich membrane. Experiments with protonated fatty acid and phosphatidylcholine spin labels, both of which have a considerably lower affinity for the Na,K-ATPase, confirm these results

    Prevention of Chemotherapy-Induced Anemia and Thrombocytopenia by Constant Administration of Stem Cell Factor

    Get PDF
    Purpose: Chemotherapy-induced apoptosis of immature hematopoietic cells is a major cause of anemia and thrombocytopenia in cancer patients. Although hematopoietic growth factors such as erythropoietin and colony-stimulating factors cannot prevent the occurrence of drug-induced myelosuppression, stem cell factor (SCF) has been previously shown to protect immature erythroid and megakaryocytic cells in vitro from drug-induced apoptosis. However, the effect of SCF in vivo as a single myeloprotective agent has never been elucidated. Experimental Design: The ability of SCF to prevent the occurrence of chemotherapy-induced anemia and thrombocytopenia was tested in a mouse model of cisplatin-induced myelosuppression. To highlight the importance of maintaining a continuous antiapoptotic signal in immature hematopoietic cells, we compared two treatment schedules: in the first schedule, SCF administration was interrupted during chemotherapy treatment and resumed thereafter, whereas in the second schedule, SCF was administered without interruption for 7 days, including the day of chemotherapy treatment. Results: The administration of SCF to cisplatin-treated mice could preserve bone marrow integrity, inhibit apoptosis of erythroid and megakaryocytic precursors, prevent chemotherapy-induced anemia, and rapidly restore normal platelet production. Treatment with SCF increased the frequency of Bcl-2/Bcl-XL\u2013 positive bone marrow erythroid cells and sustained Akt activation in megakaryocytes. Myeloprotection was observed only when SCF was administered concomitantly with cisplatin and kept constantly present during the days following chemotherapy treatment. Conclusions: SCF treatment can prevent the occurrence of chemotherapy-induced anemia and thrombocytopenia in mice, indicating a potential use of this cytokine in the supportive therapy of cancer patients

    A Quantitative Analytical Method to Test for Salt Effects on Giant Unilamellar Vesicles

    Get PDF
    Today, free-standing membranes, i.e. liposomes and vesicles, are used in a multitude of applications, e.g. as drug delivery devices and artificial cell models. Because current laboratory techniques do not allow handling of large sample sizes, systematic and quantitative studies on the impact of different effectors, e.g. electrolytes, are limited. In this work, we evaluated the Hofmeister effects of ten alkali metal halides on giant unilamellar vesicles made of palmitoyloleoylphosphatidylcholine for a large sample size by combining the highly parallel water-in-oil emulsion transfer vesicle preparation method with automatic haemocytometry. We found that this new quantitative screening method is highly reliable and consistent with previously reported results. Thus, this method may provide a significant methodological advance in analysis of effects on free-standing model membranes

    HMG-CoAR expression in male breast cancer: relationship with hormone receptors, Hippo transducers and survival outcomes

    Get PDF
    Male breast cancer (MBC) is a rare hormone-driven disease often associated with obesity. HMG-CoAR is the central enzyme of the mevalonate pathway, a molecular route deputed to produce cholesterol and steroid-based hormones. HMG-CoAR regulates the oncogenic Hippo transducers TAZ/YAP whose expression was previously associated with shorter survival in MBC. 225 MBC samples were immunostained for HMG-CoAR and 124 were considered eligible for exploring its relationship with hormone receptors (ER, PgR, AR), Hippo transducers and survival outcomes. HMG-CoAR was positively associated with the expression of hormone receptors (ER, PgR, AR) and Hippo transducers. Overall survival was longer in patients with HMG-CoAR-positive tumors compared with their negative counterparts (p = 0.031). Five- and 10-year survival outcomes were better in patients whose tumors expressed HMG-CoAR (p = 0.044 and p = 0.043). Uni- and multivariate analyses for 10-year survival suggested that HMG-CoAR expression is a protective factor (HR 0.50, 95% CI: 0.25–0.99, p = 0.048 and HR 0.53, 95% CI: 0.26–1.07, p = 0.078). Results were confirmed in a sensitivity analysis by excluding uncommon histotypes (multivariate Cox: HR 0.45, 95% CI: 0.21–0.97, p = 0.043). A positive relationship emerged between HMG-CoAR, hormone receptors and TAZ/YAP, suggesting a connection between the mevalonate pathway, the hormonal milieu and Hippo in MBC. Moreover, HMG-CoAR expression may be a favorable prognostic indicator

    The Hippo transducer TAZ as a biomarker of pathological complete response in HER2-positive breast cancer patients treated with trastuzumab-based neoadjuvant therapy

    Get PDF
    Activation of the Hippo transducer TAZ is emerging as a novel oncogenic route in breast cancer and it has been associated with breast cancer stem cells. Additionally, TAZ expression has been linked with HER-2 positivity. We investigated the association between TAZ expression and pathological complete response in HER2-positive breast cancer patients treated with trastuzumab-based neoadjuvant therapy.TAZ was assessed in diagnostic core biopsies by immunohistochemistry. To categorize samples with low TAZ and samples with high TAZ we generated a score by combining staining intensity and cellular localization. The pathological complete response rate was 78.6% in patients with low TAZ tumors and 57.6% in patients with high TAZ tumors (p=0.082). In HER2-enriched tumors there was no signi cant association between TAZ and pathological complete response, whereas in the luminal B subtype the pathological complete response rate was 82.4% in tumors with low TAZ and 44.4% in tumors with high TAZ (p=0.035). This association remained statistically signi cant when restricting our analysis to triple-positive tumors with expression of both estrogen receptor and progesterone receptor 65 50% (p=0.035). Results from this exploratory study suggest that the TAZ score ef ciently predicts pathological complete response in Luminal B, HER2-positive breast cancer patients who received neoadjuvant chemotherapy and trastuzumab

    Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-XL inhibition in non-small cell lung cancer

    Get PDF
    Lung cancer is the most common cause of cancer-related mortality worldwide, urging the discovery of novel molecular targets and therapeutic strategies. Stem cells have been recently isolated from non-small cell lung cancer (NSCLC), thus allowing the investigation of molecular pathways specifically active in the tumorigenic population. We have found that Bcl-XL is constantly expressed by lung cancer stem cells (LCSCs) and has a prominent role in regulating LCSC survival. Whereas chemotherapeutic agents were scarcely effective against LCSC, the small molecule Bcl-2/Bcl-XL inhibitor ABT-737, but not the selective Bcl-2 inhibitor ABT-199, induced LCSC death at nanomolar concentrations. Differently from gemcitabine, which preferentially eliminated proliferating LCSC, ABT-737 had an increased cytotoxic activity in vitro towards quiescent/slow-proliferating LCSC, which expressed high levels of Bcl-XL. In vivo, ABT-737 as a single agent was able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors. Altogether, these results indicate that quiescent/slow-proliferating LCSC strongly depend on Bcl-XL for their survival and indicate Bcl-XL inhibition as a potential therapeutic avenue in NSCLC
    • 

    corecore