25 research outputs found

    The role of NF-κB transcription factor in cellular response to ionizing radiation

    Get PDF
    The NF-κB transcription factor is involved in different aspects of the cellular response to stress, including atypical NF-κB pathway activated by damage induced by ionizing radiation. Moreover, NF-κB could be involved in the regulation of genes activated by other stress-responsive factors. Here we aimed to perform the integrative genomics screening to compare subsets of NF-κB-dependent genes induced by a pro-inflammatory stimulus and a high dose of ionizing radiation and also to identify new genes potentially co-regulated by NF-κB and p53 transcription factors in irradiated cells. Methods. The RelA-containing NF-κB dimers were activated by TNFα cytokine (classical proinflammatory pathway) and a single 4 or 10 Gy dose (atypical radiation-induced pathway) in human osteosarcoma cells. NF-κB-dependent and p53-dependent genes were identified using the gene expression profiling (by RNA-Seq) in cells with downregulated RELA or TP53 combined with the global profiling of RelA and p53 binding sites (by ChIP-Seq). Candidate genes were subsequently validated by quantitative PCR. Results: There were 37 NF-κB-dependent protein-coding genes identified: in all cases RelA bound in their regulatory regions upon activation while downregulation of RELA suppressed their stimulus-induced upregulation, which apparently indicated the positive regulation mode (this set of genes included a few “novel” NF-κB-dependent species). The kinetics of the NF-κB activation was slower in cells exposed to radiation than in cytokine-stimulated ones. However, subsets of NF-κB-dependent genes upregulated by both types of stimuli were essentially the same. Moreover, we identified a subset of radiation-modulated genes whose expression was affected by silencing of both TP53 and RELA, and a subset of radiation-upregulated genes where radiation stimulated binding of both p53 and RelA. For three genes an antagonistic effect of both transcription factors was observed: IL4I1 was activated by NF-κB and inhibited by p53, while CDKN1A and SERPINE1 were activated by p53 and inhibited by NF-κB. Moreover, RRAD was putatively co-activated by both factors. Conclusions: One could expect that similar cellular processes resulting from activation of the NF-κB pathway could be induced in cells responding to pro-inflammatory cytokines and in cells where so-called “sterile inflammation” response was initiated by radiation-induced damage. Moreover, certain stress-responsive genes induced by ionizing radiation could be co-regulated by NF-κB and p53.publishedVersio

    Quantum Sensing for Detection of Zinc-Triggered Free Radicals in Endothelial Cells

    Get PDF
    Oxidative stress originating from the overproduction of free radicals poses a major threat to cell fate, therefore it is of great importance to address the formation of free radicals in cells subjected to various pathological stimuli. Here we investigate the free radical response of endothelial cells to biodegradable zinc. In addition to the standard free radical assays, relaxometry was used for determining the production of free radicals in cells exposed to non-physiological concentrations of zinc ions. The cellular morphology, intracellular zinc accumulation, as well as the levels of reactive oxygen/nitrogen species, are determined using standard fluorescent methods. For endothelial cells subjected to 50% zinc extracts, deviations from the normal cell shape and cell agglomeration tendency are observed. The culture medium containing the highest amount of zinc ions caused nuclei fragmentation, blebbing, and cell shrinkage, indicating cell death. A potential explanation for the observed phenomena is an overproduction of free radicals. In the case of 1% and 10% zinc extracts, the formation of free radicals is clearly confirmed by relaxometry, while the results obtained by using fluorescent techniques are unambiguous. It is revealed that high concentrations of zinc ions released from biodegradable samples induce a deleterious effect on endothelial cells.</p

    Quantum Sensing for Detection of Zinc-Triggered Free Radicals in Endothelial Cells

    Get PDF
    Oxidative stress originating from the overproduction of free radicals poses a major threat to cell fate, therefore it is of great importance to address the formation of free radicals in cells subjected to various pathological stimuli. Here we investigate the free radical response of endothelial cells to biodegradable zinc. In addition to the standard free radical assays, relaxometry was used for determining the production of free radicals in cells exposed to non-physiological concentrations of zinc ions. The cellular morphology, intracellular zinc accumulation, as well as the levels of reactive oxygen/nitrogen species, are determined using standard fluorescent methods. For endothelial cells subjected to 50% zinc extracts, deviations from the normal cell shape and cell agglomeration tendency are observed. The culture medium containing the highest amount of zinc ions caused nuclei fragmentation, blebbing, and cell shrinkage, indicating cell death. A potential explanation for the observed phenomena is an overproduction of free radicals. In the case of 1% and 10% zinc extracts, the formation of free radicals is clearly confirmed by relaxometry, while the results obtained by using fluorescent techniques are unambiguous. It is revealed that high concentrations of zinc ions released from biodegradable samples induce a deleterious effect on endothelial cells.</p

    Activation-induced chromatin reorganization in neurons depends on HDAC1 activity

    Get PDF
    Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.publishedVersio

    Activation-induced chromatin reorganization in neurons depends on HDAC1 activity

    Get PDF
    Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.This work was supported by the National Science Centre grant nos. UMO-2015/18/E/NZ3/00730 (A.M., A.G., H.S.N., E.J. and Y.Y.), 2014/15/N/NZ2/00379 and 2017/24/T/NZ2/00307 (P.T.), 2019/35/O/ST6/02484 (D.P. and G.B.), and 2014/14/M/NZ4/00561 (K.H.O. and R.K.F.). B.W. and B.G. were supported by the Foundation for Polish Science TEAM-TECH Core Facility project “NGS platform for comprehensive diagnostics and personalized therapy in neuro-oncology,” Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund (TEAM to D.P.). A.M.G. was supported by the H2020-MSCA-COFUND-2014 grant Bio4Med (GA no. 665735).Peer reviewe

    Global DNA Methylation Patterns in Human Gliomas and Their Interplay with Other Epigenetic Modifications

    No full text
    During the last two decades, several international consortia have been established to unveil the molecular background of human cancers including gliomas. As a result, a huge outbreak of new genetic and epigenetic data appeared. It was not only shown that gliomas share some specific DNA sequence aberrations, but they also present common alterations of chromatin. Many researchers have reported specific epigenetic features, such as DNA methylation and histone modifications being involved in tumor pathobiology. Unlike mutations in DNA, epigenetic changes are more global in nature. Moreover, many studies have shown an interplay between different types of epigenetic changes. Alterations in DNA methylation in gliomas are one of the best described epigenetic changes underlying human pathology. In the following work, we present the state of knowledge about global DNA methylation patterns in gliomas and their interplay with histone modifications that may affect transcription factor binding, global gene expression and chromatin conformation. Apart from summarizing the impact of global DNA methylation on glioma pathobiology, we provide an extract of key mechanisms of DNA methylation machinery

    BLM helicase overexpressed in human gliomas contributes to diverse responses of human glioma cells to chemotherapy

    No full text
    Abstract Most of anti-tumour therapies eliminate neoplastic cells by introducing DNA damage which ultimately triggers cell death. These effects are counteracted by activated DNA repair pathways to sustain tumour proliferation capacity. RECQL helicases family, including BLM, participate in DNA damage and repair, and prevent the replication stress. Glioblastoma (GBM) is a common, malignant brain tumour that inevitably recurs despite surgical resection, radiotherapy, and chemotherapy with temozolomide (TMZ). Expression and functions of the BLM helicase in GBM therapy resistance have not been elucidated. We analysed expression and localisation of BLM in human gliomas and several glioma cell lines using TCGA datasets, immunostaining and Western blotting. BLM depleted human glioma cells were generated with CRISPR/Cas9 system. Effects of chemotherapeutics on cell proliferation, DNA damage and apoptosis were determined with flow cytometry, immunofluorescence, Western blotting and RNA sequencing. We found upregulated BLM mRNA levels in malignant gliomas, increased cytosolic localisation and poor survival of GBM patients with high BLM expression. BLM deficiency in LN18 and LN229 glioma cells resulted in profound transcriptomic alterations, reduced cell proliferation, and altered cell responses to chemotherapeutics. BLM-deficient glioma cells were resistant to the TMZ and PARP inhibitor treatment and underwent polyploidy or senescence depending on the TP53 activity. Our findings of high BLM expression in GBMs and its roles in responses to chemotherapeutics provide a rationale for targeting BLM helicase in brain tumours. BLM deficiency affects responses of glioma cells to chemotherapeutics targeting PARP1 dependent pathways

    EGFR/FOXO3a/BIM signaling pathway determines chemosensitivity of BMP4-differentiated glioma stem cells to temozolomide

    No full text
    Brain cancer: Stem cell properties may determine chemotherapy success The properties of individual glioma stem cells (GSCs) may influence the success of chemotherapy in tackling aggressive brain cancer. GSCs promote tumor growth and chemotherapy resistance in glioblastoma tumors. One potential treatment approach uses bone morphogenetic proteins to induce GSCs to differentiate into less harmful cells. Once the GSC population has dwindled, chemoresistance reduces in many but not all cases. Jakub Mieczkowski, Bozena Kaminska and co-workers at the Nencki Institute of Experimental Biology in Warsaw, Poland, conducted experiments on patient-derived glioblastoma cell cultures. They found that samples with high expression levels of the epidermal growth factor receptor (EGFR) protein in GSCs showed heightened sensitivity to the chemotherapy drug temozolomide after differentiation. Conversely, low levels of EGFR resulted in chemoresistance being maintained after differentiation, which may explain the failure of chemotherapy in some patients
    corecore