16,305 research outputs found

    Fluctuations of the Casimir-Polder force between an atom and a conducting wall

    Full text link
    We consider the quantum fluctuations of the Casimir-Polder force between a neutral atom and a perfectly conducting wall in the ground state of the system. In order to obtain the atom-wall force fluctuation we first define an operator directly associated to the force experienced by the atom considered as a polarizable body in an electromagnetic field, and we use a time-averaged force operator in order to avoid ultraviolet divergences appearing in the fluctuation of the force. This time-averaged force operator takes into account that any measurement involves a finite time. We also calculate the Casimir-Polder force fluctuation for an atom between two conducting walls. Experimental observability of these Casimir-Polder force fluctuations is also discussed, as well as the dependence of the relative force fluctuation on the duration of the measurement.Comment: 6 page

    Experience and Assessment of the DOE/NASA Mod-1 2000 Kw Wind Turbine Generator at Boone, North Carolina

    Get PDF
    The Mod 1 program objectives are defined. The Mod 1 wind turbine is described. In addition to the steel blade operated on the wind turbine, a composite blade was designed and manufactured. During the early phase of the manufacturing cycle of Mod 1A configuration was designed that identified concepts such as partial span control, a soft tower, and upwind teetered rotors that were incorporated in second and third generation industry designs. The Mod 1 electrical system performed as designed, with voltage flicker characteristics within acceptable utility limits

    Thin Films of 3He -- Implications on the Identification of 3 He -A

    Full text link
    Recently the identification of 3He-A with the axial state has been questioned. It is suggested that the A-phase can actually be in the axiplanar state. We point out in the present paper that experiments in a film geometry may be useful to distinguish the above two possibilities. In particular a second order phase transition between an axial and an axiplanar state would occur as a function of thickness or temperature.Comment: 3 pages, no figures latex- revtex aps accepted by J. of Low Temperature Physic

    Issues of Reggeization in qqqq' Back-Angle Scattering

    Full text link
    The Kirschner-Lipatov result for the DLLA of high-energy qqqq' backward scattering is re-derived without the use of integral equations. It is shown that part of the inequalities between the variables in the logarithmically-divergent integrals is inconsequential. The light-cone wave-function interpretation under the conditions of backward scattering is discussed. It is argued that for hadron-hadron scattering in the valence-quark model the reggeization should manifest itself at full strength starting from shh=50GeV2s_{hh}=50 GeV^2.Comment: 10 Pages, 2 Figures. To appear in Proc. of Int. Conf. "New Trends in High Energy Physics", 27 Sept.-4 Oct. 2008, Yalta, Crimea, Ukrain

    Effects of the Lattice Discreteness on a Soliton in the Su-Schrieffer-Heeger Model

    Full text link
    In this paper we analytically study the effects of the lattice discreteness on the electron band in the SSH model. We propose a modified version of the TLM model which is derived from the SSH model using a continuum approximation. When a soliton is induced in the electron-lattice system, the electron scattering states both at the bottom of the valence band and the top of the conduction band are attracted to the soliton. This attractive force induces weakly localized electronic states at the band edges. Using the modified version of the TLM model, we have succeeded in obtaining analytical solutions of the weakly localized states and the extended states near the bottom of the valence band and the top of the conduction band. This band structure does not modify the order parameters. Our result coincides well with numerical simulation works.Comment: to be appear in J.Phys.Soc.Jpn. Figures should be requested to the author. They will be sent by the conventional airmai

    Thermodynamic Scaling of the Viscosity of Van Der Waals, H-Bonded, and Ionic Liquids

    Full text link
    Viscosities and their temperature, T, and volume, V, dependences are reported for 7 molecular liquids and polymers. In combination with literature viscosity data for 5 other liquids, we show that the superpositioning of relaxation times for various glass-forming materials when expressed as a function of TV^g, where the exponent g is a material constant, can be extended to the viscosity. The latter is usually measured to higher temperatures than the corresponding relaxation times, demonstrating the validity of the thermodynamic scaling throughout the supercooled and higher T regimes. The value of g for a given liquid principally reflects the magnitude of the intermolecular forces (e.g., steepness of the repulsive potential); thus, we find decreasing g in going from van der Waals fluids to ionic liquids. For strongly H-bonded materials, such as low molecular weight polypropylene glycol and water, the superpositioning fails, due to the non-trivial change of chemical structure (degree of H-bonding) with thermodynamic conditions.Comment: 16 pages 7 figure

    Groups of two galaxies in SDSS: implications of colours on star formation quenching time-scales

    Full text link
    We have devised a method to select galaxies that are isolated in their dark matter halo (N=1 systems) and galaxies that reside in a group of exactly two (N=2 systems). Our N=2 systems are widely-separated (up to \sim\,200\,h1h^{-1}\,kpc), where close galaxy-galaxy interactions are not dominant. We apply our selection criteria to two volume-limited samples of galaxies from SDSS DR6 with Mr5log10hM_{r}-5 \log_{10} h \leq -19 and -20 to study the effects of the environment of very sparse groups on galaxy colour. For satellite galaxies in a group of two, we find a red excess attributed to star formation quenching of 0.15\,±\pm\,0.01 and 0.14\,±\pm\,0.01 for the -19 and -20 samples, respectively, relative to isolated galaxies of the same stellar mass. Assuming N=1 systems are the progenitors of N=2 systems, an immediate-rapid star formation quenching scenario is inconsistent with these observations. A delayed-then-rapid star formation quenching scenario with a delay time of 3.3 and 3.7\,Gyr for the -19 and -20 samples, respectively, yields a red excess prediction in agreement with the observations. The observations also reveal that central galaxies in a group of two have a slight blue excess of 0.06\,±\pm\,0.02 and 0.02\,±\pm\,0.01 for the -19 and -20 samples, respectively, relative to N=1 populations of the same stellar mass. Our results demonstrate that even the environment of very sparse groups of luminous galaxies influence galaxy evolution and in-depth studies of these simple systems are an essential step towards understanding galaxy evolution in general.Comment: 17 pages, 11 figures, accepted to MNRA
    corecore