12,190 research outputs found

    Deconvolving mutational patterns of poliovirus outbreaks reveals its intrinsic fitness landscape.

    Get PDF
    Vaccination has essentially eradicated poliovirus. Yet, its mutation rate is higher than that of viruses like HIV, for which no effective vaccine exists. To investigate this, we infer a fitness model for the poliovirus viral protein 1 (vp1), which successfully predicts in vitro fitness measurements. This is achieved by first developing a probabilistic model for the prevalence of vp1 sequences that enables us to isolate and remove data that are subject to strong vaccine-derived biases. The intrinsic fitness constraints derived for vp1, a capsid protein subject to antibody responses, are compared with those of analogous HIV proteins. We find that vp1 evolution is subject to tighter constraints, limiting its ability to evade vaccine-induced immune responses. Our analysis also indicates that circulating poliovirus strains in unimmunized populations serve as a reservoir that can seed outbreaks in spatio-temporally localized sub-optimally immunized populations

    ATP-Stimulated, DNA-Mediated Redox Signaling by XPD, a DNA Repair and Transcription Helicase

    Get PDF
    Using DNA-modified electrodes, we show DNA-mediated signaling by XPD, a helicase that contains a [4Fe-4S] cluster and is critical for nucleotide excision repair and transcription. The DNA-mediated redox signal resembles that of base excision repair proteins, with a DNA-bound redox potential of ~80 mV versus NHE. Significantly, this signal increases with ATP hydrolysis. Moreover, the redox signal is substrate-dependent, reports on the DNA conformational changes associated with enzymatic function, and may reflect a general biological role for DNA charge transport

    A benign, low Z electron capture agent for negative ion TPCs

    Get PDF
    We have identified nitromethane (CH3_3NO2_2) as an effective electron capture agent for negative ion TPCs (NITPCs). We present drift velocity and longitudinal diffusion measurements for negative ion gas mixtures using nitromethane as the capture agent. Not only is nitromethane substantially more benign than the only other identified capture agent, CS2_2, but its low atomic number will enable the use of the NITPC as a photoelectric X{}-ray polarimeter in the 1{}-10 keV band

    DNA charge transport as a first step in coordinating the detection of lesions by repair proteins

    Get PDF
    Damaged bases in DNA are known to lead to errors in replication and transcription, compromising the integrity of the genome. We have proposed a model where repair proteins containing redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in finding lesions. In this model, the population of sites to search is reduced by a localization of protein in the vicinity of lesions. Here, we examine this model using single-molecule atomic force microscopy (AFM). XPD, a 5′-3′ helicase involved in nucleotide excision repair, contains a [4Fe-4S] cluster and exhibits a DNA-bound redox potential that is physiologically relevant. In AFM studies, we observe the redistribution of XPD onto kilobase DNA strands containing a single base mismatch, which is not a specific substrate for XPD but, like a lesion, inhibits CT. We further provide evidence for DNA-mediated signaling between XPD and Endonuclease III (EndoIII), a base excision repair glycosylase that also contains a [4Fe-4S] cluster. When XPD and EndoIII are mixed together, they coordinate in relocalizing onto the mismatched strand. However, when a CT-deficient mutant of either repair protein is combined with the CT-proficient repair partner, no relocalization occurs. These data not only indicate a general link between the ability of a repair protein to carry out DNA CT and its ability to redistribute onto DNA strands near lesions but also provide evidence for coordinated DNA CT between different repair proteins in their search for damage in the genome

    Plastic-crystalline solid-state electrolytes: Ionic conductivity and orientational dynamics in nitrile mixtures

    Full text link
    Many plastic crystals, molecular solids with long-range, center-of-mass crystalline order but dynamic disorder of the molecular orientations, are known to exhibit exceptionally high ionic conductivity. This makes them promising candidates for applications as solid-state electrolytes, e.g., in batteries. Interestingly, it was found that the mixing of two different plastic-crystalline materials can considerably enhance the ionic dc conductivity, an important benchmark quantity for electrochemical applications. An example is the admixture of different nitriles to succinonitrile, the latter being one of the most prominent plastic-crystalline ionic conductors. However, until now only few such mixtures were studied. In the present work, we investigate succinonitrile mixed with malononitrile, adiponitrile, and pimelonitrile, to which 1 mol% of Li ions were added. Using differential scanning calorimetry and dielectric spectroscopy, we examine the phase behavior and the dipolar and ionic dynamics of these systems. We especially address the mixing-induced enhancement of the ionic conductivity and the coupling of the translational ionic mobility to the molecular reorientational dynamics, probably arising via a "revolving-door" mechanism.Comment: 9 pages, 7 figures; revised version as accepted for publication in J. Chem. Phy

    Modelling and in vitro testing of the HIV-1 Nef fitness landscape.

    Get PDF
    An effective vaccine is urgently required to curb the HIV-1 epidemic. We have previously described an approach to model the fitness landscape of several HIV-1 proteins, and have validated the results against experimental and clinical data. The fitness landscape may be used to identify mutation patterns harmful to virus viability, and consequently inform the design of immunogens that can target such regions for immunological control. Here we apply such an analysis and complementary experiments to HIV-1 Nef, a multifunctional protein which plays a key role in HIV-1 pathogenesis. We measured Nef-driven replication capacities as well as Nef-mediated CD4 and HLA-I down-modulation capacities of thirty-two different Nef mutants, and tested model predictions against these results. Furthermore, we evaluated the models using 448 patient-derived Nef sequences for which several Nef activities were previously measured. Model predictions correlated significantly with Nef-driven replication and CD4 down-modulation capacities, but not HLA-I down-modulation capacities, of the various Nef mutants. Similarly, in our analysis of patient-derived Nef sequences, CD4 down-modulation capacity correlated the most significantly with model predictions, suggesting that of the tested Nef functions, this is the most important in vivo. Overall, our results highlight how the fitness landscape inferred from patient-derived sequences captures, at least in part, the in vivo functional effects of mutations to Nef. However, the correlation between predictions of the fitness landscape and measured parameters of Nef function is not as accurate as the correlation observed in past studies for other proteins. This may be because of the additional complexity associated with inferring the cost of mutations on the diverse functions of Nef
    corecore