19 research outputs found

    Garcinoic acid prevents β-amyloid (Aβ) deposition in the mouse brain

    Get PDF
    Garcinoic acid (GA or δ-T3-13'COOH), is a natural vitamin E metabolite that has preliminarily been identified as a modulator of nuclear receptors involved in β-amyloid (Aβ) metabolism and progression of Alzheimer's disease (AD). In this study, we investigated GA's effects on Aβ oligomer formation and deposition. Specifically, we compared them with those of other vitamin E analogs and the soy isoflavone genistein, a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that has therapeutic potential for managing AD. GA significantly reduced Aβ aggregation and accumulation in mouse cortical astrocytes. Similarly to genistein, GA up-regulated PPARγ expression and apolipoprotein E (ApoE) efflux in these cells with an efficacy that was comparable with that of its metabolic precursor δ-tocotrienol and higher than those of α-tocopherol metabolites. Unlike for genistein and the other vitamin E compounds, the GA-induced restoration of ApoE efflux was not affected by pharmacological inhibition of PPARγ activity, and specific activation of pregnane X receptor (PXR) was observed together with ApoE and multidrug resistance protein 1 (MDR1) membrane transporter up-regulation in both the mouse astrocytes and brain tissue. These effects of GA were associated with reduced Aβ deposition in the brain of TgCRND8 mice, a transgenic AD model. In conclusion, GA holds potential for preventing Aβ oligomerization and deposition in the brain. The mechanistic aspects of GA's properties appear to be distinct from those of other vitamin E metabolites and of genistein

    Contamination of Plants from Amazonia by Environmental Pollution

    No full text
    Analytical data concerning the contamination on three officinal plants due to Persistent Organic Pollutants (POPs), as organochlorine pesticides, are reported and discussed. Analyzed vegetation—“Graviola” (Annona muricata), “Mullaca” (Physalis angulata) and “Balsamina” (Impatiens balsamina)—comes from the Peruvian Amazonian forest, and are well known for their numerous therapeutic properties. A portion of each vegetable sample (leaves) was submitted to extraction procedure with hexane-acetone (1:1, v/v) solution by using a continuous solid-liquid extraction. The extracts were analyzed by Gas Chromatography-Tandem Mass Spectrometry (GC-MS/MS) and Multi Reaction Monitoring (MRM) techniques. Obtained results show the presence of DDT (dichlorodiphenyltrichloroethane) and its breakdown products, as DDD (dichlorodiphenyldichloroethane) and DDE (dichlorodiphenyldichloroethylene), while the hexachlorobenzene was found only in the “Graviola” (0.041 ng/g of dry weight (d.w.) net matter). The total POPs quantities were detected in the concentration range of ppb, varying from 0.349 and 0.614 ng/g d.w. for “Mullaca” and “Graviola”, respectively, up to 1.329 ng/g d.w. in the case of “Balsamina”. Recorded concentration trace values in the case of hexachlorobenzene could be an indication of a contamination of plants due to a probable short-range atmospheric transport pollution. The DDT contamination could be due to the use of DDT against malaria during the years 1992–1997 or to a probable usage of dicoflos and rothane insecticide in the harvesting area. Our analytical determinations exclude the presence of polychlorinated biphenyls (PCBs) in all three investigated plant materials

    Foraging Honeybees (<i>Apis mellifera ligustica</i>) as Biocenosis Monitors of Pollution in Areas Affected by Cement Industry Emissions

    No full text
    Two areas affected by cement plant emissions, in an industrial district of Central Italy, were investigated by foraging honeybees (Apis mellifera ligustica) on the return to their hives, as an in situ biomonitor. The contamination was compared with that of a background reference area on the Central Apennine Mountains, quite far from the contamination sources. At all the sites, the bee colonies were stationary. One hundred seventy-seven compounds belonging to the class of polycyclic aromatic compounds (PACs) were positively identified by gas chromatographic and mass spectrometric techniques. For the first time, the presence of several unusual compounds on bee samples is highlighted. These include polycyclic aromatic sulfur heterocycles (PASHs), 1.55–35.63 ng/g d.w., compounds that, like polycyclic aromatic hydrocarbons (PAHs), 67.50–129.95 ng d.w., are classified as carcinogenic and/or mutagenic. In an attempt to identify the contribution of different and specific sources of these pollutants to the total pollution profile, the composition of aliphatic linear hydrocarbons was also examined

    Monoterpene Synthase Genes and Monoterpene Profiles in Pinus nigra subsp. laricio

    No full text
    In the present study, we carried out a quantitative analysis of the monoterpenes composition in different tissues of the non-model conifer Pinus nigra J.F. Arnold subsp. laricio Palib. ex Maire (P. laricio, in short). All the P. laricio tissues examined showed the presence of the same fourteen monoterpenes, among which the most abundant were &beta;-phellandrene, &alpha;-pinene, and &beta;-pinene, whose distribution was markedly tissue-specific. In parallel, from the same plant tissues, we isolated seven full-length cDNA transcripts coding for as many monoterpene synthases, each of which was found to be attributable to one of the seven phylogenetic groups in which the d1-clade of the canonical classification of plants&rsquo; terpene synthases can be subdivided. The amino acid sequences deduced from the above cDNA transcripts allowed to predict their putative involvement in the biosynthesis of five of the monoterpenes identified. Transcripts profiling revealed a differential gene expression across the different tissues examined, and was found to be consistent with the corresponding metabolites profiles. The genomic organization of the seven isolated monoterpene synthase genes was also determined

    Diterpene Resin Acids and Olefins in Calabrian Pine (Pinus nigra subsp. laricio (Poiret) Maire) Oleoresin: GC-MS Profiling of Major Diterpenoids in Different Plant Organs, Molecular Identification and Expression Analysis of Diterpene Synthase Genes

    No full text
    A quali-quantitative analysis of diterpenoid composition in tissues obtained from different organs of Pinus nigra subsp. laricio (Poiret) Maire (Calabrian pine) was carried out. Diterpene resin acids were the most abundant diterpenoids across all the examined tissues. The same nine diterpene resin acids were always found, with the abietane type prevailing on the pimarane type, although their quantitative distribution was found to be remarkably tissue-specific. The scrutiny of the available literature revealed species specificity as well. A phylogeny-based approach allowed us to isolate four cDNAs coding for diterpene synthases in Calabrian pine, each of which belonging to one of the four groups into which the d3 clade of the plants' terpene synthases family can be divided. The deduced amino acid sequences allowed predicting that both monofunctional and bifunctional diterpene synthases are involved in the biosynthesis of diterpene resin acids in Calabrian pine. Transcript profiling revealed differential expression across the different tissues and was found to be consistent with the corresponding diterpenoid profiles. The isolation of the complete genomic sequences and the determination of their exon/intron structures allowed us to place the diterpene synthase genes from Calabrian pine on the background of current ideas on the functional evolution of diterpene synthases in Gymnosperms.9n

    Diterpene Resin Acids and Olefins in Calabrian Pine (Pinus nigra subsp. laricio (Poiret) Maire) Oleoresin: GC-MS Profiling of Major Diterpenoids in Different Plant Organs, Molecular Identification and Expression Analysis of Diterpene Synthase Genes

    No full text
    A quali-quantitative analysis of diterpenoid composition in tissues obtained from different organs of Pinus nigra subsp. laricio (Poiret) Maire (Calabrian pine) was carried out. Diterpene resin acids were the most abundant diterpenoids across all the examined tissues. The same nine diterpene resin acids were always found, with the abietane type prevailing on the pimarane type, although their quantitative distribution was found to be remarkably tissue-specific. The scrutiny of the available literature revealed species specificity as well. A phylogeny-based approach allowed us to isolate four cDNAs coding for diterpene synthases in Calabrian pine, each of which belonging to one of the four groups into which the d3 clade of the plants&rsquo; terpene synthases family can be divided. The deduced amino acid sequences allowed predicting that both monofunctional and bifunctional diterpene synthases are involved in the biosynthesis of diterpene resin acids in Calabrian pine. Transcript profiling revealed differential expression across the different tissues and was found to be consistent with the corresponding diterpenoid profiles. The isolation of the complete genomic sequences and the determination of their exon/intron structures allowed us to place the diterpene synthase genes from Calabrian pine on the background of current ideas on the functional evolution of diterpene synthases in Gymnosperms

    Deposition processes over complex topographies: experimental data meets atmospheric modelling

    No full text
    The present paper describes the assessment of the atmospheric deposition processes in a basin valley through a multidisciplinary approach based on the data collected within an extensive chemical-physical characterization of the soils, combined with the local meteorology. Surface soil cores were collected on a NNW-SSE transect across the Terni basin (Central Italy), between the Monti Martani and the Monti Sabini chains (956 m a.s.l.), featuring the heavily polluted urban and industrial enclave of Terni on its bottom. Airborne radiotracers, namely 210Pb and 137Cs, have been used to highlight atmospheric deposition. We observed an increased deposition flux of 210Pb and 137Cs at sites located at the highest altitudes, and the associated concentration profiles in soil allowed to evaluate the role of atmospheric deposition. We also obtained a comprehensive dataset of stable anthropogenic pollutants of atmospheric origin that showed heterogeneity along the transect. The behavior has been explained by the local characteristic of the soil, by seeder-feeder processes promoted by the atmospheric circulation, and was reconciled with the concentration profile of radiotracers by factor analysis. Finally, the substantial impact of the local industrial activities on soil profiles and the role of the planetary boundary layer has been discussed and supported by simulations employing a Lagrangian dispersion model

    Deposition processes over complex topographies: Experimental data meets atmospheric modeling

    No full text
    The present paper describes the assessment of the atmospheric deposition processes in a basin valley through a multidisciplinary approach based on the data collected within an extensive chemicalphysical characterization of the soils, combined with the local meteorology. Surface soil cores were collected on a NNW-SSE transect across the Terni basin (Central Italy), between the Monti Martani and the Monti Sabini chains (956\u202fm\u202fa.s.l.), featuring the heavily polluted urban and industrial enclave of Terni on its bottom. Airborne radiotracers, namely 210Pb and 137Cs, have been used to highlight atmospheric deposition. We observed an increased deposition flux of 210Pb and 137Cs at sites located at the highest altitudes, and the associated concentration profiles in soil allowed to evaluate the role of atmospheric deposition. We also obtained a comprehensive dataset of stable anthropogenic pollutants of atmospheric origin that showed heterogeneity along the transect. The behavior has been explained by the local characteristic of the soil, by seeder-feeder processes promoted by the atmospheric circulation, and was reconciled with the concentration profile of radiotracers by factor analysis. Finally, the substantial impact of the local industrial activities on soil profiles and the role of the planetary boundary layer has been discussed and supported by simulations employing a Lagrangian dispersion model

    Alpha-Tocopherol Metabolites (The Vitamin E Metabolome) and Their Interindividual Variability during Supplementation

    No full text
    The metabolism of &alpha;-tocopherol (&alpha;-TOH, vitamin E) shows marked interindividual variability, which may influence the response to nutritional and therapeutic interventions with this vitamin. Recently, new metabolomics protocols have fostered the possibility to explore such variability for the different metabolites of &alpha;-TOH so far identified in human blood, i.e., the &ldquo;vitamin E metabolome&rdquo;, some of which have been reported to promote important biological functions. Such advances prompt the definition of reference values and degree of interindividual variability for these metabolites at different levels of &alpha;-TOH intake. To this end, a one-week oral administration protocol with 800 U RRR-&alpha;-TOH/day was performed in 17 healthy volunteers, and &alpha;-TOH metabolites were measured in plasma before and at the end of the intervention utilizing a recently validated LC-MS/MS procedure; the expression of two target genes of &alpha;-TOH with possible a role in the metabolism and function of this vitamin, namely pregnane X receptor (PXR) and the isoform 4F2 of cytochrome P450 (CYP4F2) was assessed by immunoblot in peripheral blood leukocytes. The levels of enzymatic metabolites showed marked interindividual variability that characteristically increased upon supplementation. With the exception of &alpha;-CEHC (carboxy-ethyl-hydroxychroman) and the long-chain metabolites M1 and &alpha;-13&prime;OH, such variability was found to interfere with the possibility to utilize them as sensitive indicators of &alpha;-TOH intake. On the contrary, the free radical-derived metabolite &alpha;-tocopheryl quinone significantly correlated with the post-supplementation levels of &alpha;-TOH. The supplementation stimulated PXR, but not CYP4F2, expression of leucocytes, and significant correlations were observed between the baseline levels of &alpha;-TOH and both the baseline and post-supplementation levels of PXR. These findings provide original analytical and molecular information regarding the human metabolism of &alpha;-TOH and its intrinsic variability, which is worth considering in future nutrigenomics and interventions studies
    corecore