66 research outputs found

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    The B-Cell Specific Transcription Factor, Oct-2, Promotes Epstein-Barr Virus Latency by Inhibiting the Viral Immediate-Early Protein, BZLF1

    Get PDF
    The Epstein-Barr virus (EBV) latent-lytic switch is mediated by the BZLF1 immediate-early protein. EBV is normally latent in memory B cells, but cellular factors which promote viral latency specifically in B cells have not been identified. In this report, we demonstrate that the B-cell specific transcription factor, Oct-2, inhibits the function of the viral immediate-early protein, BZLF1, and prevents lytic viral reactivation. Co-transfected Oct-2 reduces the ability of BZLF1 to activate lytic gene expression in two different latently infected nasopharyngeal carcinoma cell lines. Furthermore, Oct-2 inhibits BZLF1 activation of lytic EBV promoters in reporter gene assays, and attenuates BZLF1 binding to lytic viral promoters in vivo. Oct-2 interacts directly with BZLF1, and this interaction requires the DNA-binding/dimerization domain of BZLF1 and the POU domain of Oct-2. An Oct-2 mutant (Δ262–302) deficient for interaction with BZLF1 is unable to inhibit BZLF1-mediated lytic reactivation. However, an Oct-2 mutant defective for DNA-binding (Q221A) retains the ability to inhibit BZLF1 transcriptional effects and DNA-binding. Importantly, shRNA-mediated knockdown of endogenous Oct-2 expression in several EBV-positive Burkitt lymphoma and lymphoblastoid cell lines increases the level of lytic EBV gene expression, while decreasing EBNA1 expression. Moreover, treatments which induce EBV lytic reactivation, such as anti-IgG cross-linking and chemical inducers, also decrease the level of Oct-2 protein expression at the transcriptional level. We conclude that Oct-2 potentiates establishment of EBV latency in B cells

    Right hemisphere has the last laugh: neural dynamics of joke appreciation

    Get PDF
    Understanding a joke relies on semantic, mnemonic, inferential, and emotional contributions from multiple brain areas. Anatomically constrained magnetoencephalography (aMEG) combining high-density whole-head MEG with anatomical magnetic resonance imaging allowed us to estimate where the humor-specific brain activations occur and to understand their temporal sequence. Punch lines provided either funny, not funny (semantically congruent), or nonsensical (incongruent) replies to joke questions. Healthy subjects rated them as being funny or not funny. As expected, incongruous endings evoke the largest N400m in left-dominant temporo-prefrontal areas, due to integration difficulty. In contrast, funny punch lines evoke the smallest N400m during this initial lexical–semantic stage, consistent with their primed “surface congruity” with the setup question. In line with its sensitivity to ambiguity, the anteromedial prefrontal cortex may contribute to the subsequent “second take” processing, which, for jokes, presumably reflects detection of a clever “twist” contained in the funny punch lines. Joke-selective activity simultaneously emerges in the right prefrontal cortex, which may lead an extended bilateral temporo-frontal network in establishing the distant unexpected creative coherence between the punch line and the setup. This progression from an initially promising but misleading integration from left frontotemporal associations, to medial prefrontal ambiguity evaluation and right prefrontal reprocessing, may reflect the essential tension and resolution underlying humor

    Autosomal recessive cerebellar ataxias

    Get PDF
    Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological disorders involving both central and peripheral nervous system, and in some case other systems and organs, and characterized by degeneration or abnormal development of cerebellum and spinal cord, autosomal recessive inheritance and, in most cases, early onset occurring before the age of 20 years. This group encompasses a large number of rare diseases, the most frequent in Caucasian population being Friedreich ataxia (estimated prevalence 2–4/100,000), ataxia-telangiectasia (1–2.5/100,000) and early onset cerebellar ataxia with retained tendon reflexes (1/100,000). Other forms ARCA are much less common. Based on clinicogenetic criteria, five main types ARCA can be distinguished: congenital ataxias (developmental disorder), ataxias associated with metabolic disorders, ataxias with a DNA repair defect, degenerative ataxias, and ataxia associated with other features. These diseases are due to mutations in specific genes, some of which have been identified, such as frataxin in Friedreich ataxia, α-tocopherol transfer protein in ataxia with vitamin E deficiency (AVED), aprataxin in ataxia with oculomotor apraxia (AOA1), and senataxin in ataxia with oculomotor apraxia (AOA2). Clinical diagnosis is confirmed by ancillary tests such as neuroimaging (magnetic resonance imaging, scanning), electrophysiological examination, and mutation analysis when the causative gene is identified. Correct clinical and genetic diagnosis is important for appropriate genetic counseling and prognosis and, in some instances, pharmacological treatment. Due to autosomal recessive inheritance, previous familial history of affected individuals is unlikely. For most ARCA there is no specific drug treatment except for coenzyme Q10 deficiency and abetalipoproteinemia

    Micelles protect membrane complexes from solution to vacuum.

    No full text
    The ability to maintain interactions between soluble protein subunits in the gas phase of a mass spectrometer gives critical insight into the stoichiometry and interaction networks of protein complexes. Conversely, for membrane protein complexes in micelles, the transition into the gas phase usually leads to the disruption of interactions, particularly between cytoplasmic and membrane subunits, and a mass spectrum dominated by large aggregates of detergent molecules. We show that by applying nanoelectrospray to a micellar solution of a membrane protein complex, the heteromeric adenosine 5'-triphosphate (ATP)-binding cassette transporter BtuC2D2, we can maintain the complex intact in the gas phase of a mass spectrometer. Dissociation of either transmembrane (BtuC) or cytoplasmic (BtuD) subunits uncovers modifications to the transmembrane subunits and cooperative binding of ATP. By protecting a membrane protein complex within a n-dodecyl-beta-d-maltoside micelle, we demonstrated a powerful strategy that will enable the subunit stoichiometry and ligand-binding properties of membrane complexes to be determined directly, by precise determination of the masses of intact complexes and dissociated subunits

    Additive Manufacturing Technologies

    No full text

    The apolipoprotein A-I mimetic peptide ETC-642 exhibits anti-inflammatory properties that are comparable to high density lipoproteins.

    Full text link
    OBJECTIVES: Mimetic peptides of apolipoprotein A-I (apoA-I) present a new strategy for promoting the biological activity of high density lipoproteins (HDL). This study aimed to compare the anti-inflammatory effects of ETC-642, a new apoA-I mimetic peptide, with discoidal reconstituted HDL (rHDL). METHODS: New Zealand White rabbits (n=42) received daily infusions of saline, rHDL or discoidal complexes of an amphipathic peptide, ETC-642 (1-30 mg/kg), prior to insertion of non-occlusive carotid collars. Human coronary artery endothelial cells (HCAECs) were pre-incubated with ETC-642 or rHDL before TNF-α stimulation. Monocyte adhesion was investigated by pre-incubating HCAECs with rHDL or ETC-642, stimulating with TNF-α and incubating with THP-1 monocytes. RESULTS: Infusion of ETC-642 resulted in dose-dependent reductions of collar-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the artery wall (p<0.05). Pre-incubation of HCAECs with ETC-642 and rHDL reduced TNF-α-induced THP-1 monocyte adhesion (p<0.01). Furthermore, ETC-642 and rHDL treatment reduced TNF-α induced mRNA levels of inflammatory markers VCAM-1, fractalkine, MCP-1 and the p65 subunit of NF-κB (p<0.05). CONCLUSION: These studies demonstrate that ETC-642 exhibits anti-inflammatory properties that are comparable to apoA-I both in vivo and in vitro and that these effects are mediated via the NF-κB signaling pathway

    Ion mobility mass spectrometry of two tetrameric membrane protein complexes reveals compact structures and differences in stability and packing.

    No full text
    Here we examined the gas-phase structures of two tetrameric membrane protein complexes by ion mobility mass spectrometry. The collision cross sections measured for the ion channel are in accord with a compact configuration of subunits, suggesting that the native-like structure can be preserved under the harsh activation conditions required to release it from the detergent micelle into the gas phase. We also found that the quaternary structure of the transporter, which has fewer transmembrane subunits than the ion channel, is less stable once stripped of detergents and bulk water. These results highlight the potential of ion mobility mass spectrometry for characterizing the overall topologies of membrane protein complexes and the structural changes associated with nucleotide, lipid, and drug binding
    corecore