1,210 research outputs found

    Adhesive Contact to a Coated Elastic Substrate

    Get PDF
    We show how the quasi-analytic method developed to solve linear elastic contacts to coated substrates (Perriot A. and Barthel E. {\em J. Mat. Res.}, {\bf 2004}, {\em 19}, 600) may be extended to adhesive contacts. Substrate inhomogeneity lifts accidental degeneracies and highlights the general structure of the adhesive contact theory. We explicit the variation of the contact variables due to substrate inhomogeneity. The relation to other approaches based on Finite Element analysis is discussed

    The Bologna Complete Sample of Nearby Radio Sources

    Full text link
    We present a new, complete, sample of 95 radio sources selected from the B2 and 3CR catalogues, with z < 0.1. Since no selection effect on the core radio power, jet velocity, or source orientation is present, this sample is well suited for statistical studies. In this first paper we present the observational status of all sources on the parsec (mas) and kiloparsec (arcsec) scale; we give new parsec-scale data for 28 sources and discuss their parsec-scale properties. Combining these data with those in the literature, information on the parsec-scale morphology is available for a total of 53 radio sources with different radio power and kpc-scale morphology. We investigate their properties. We find a dramatically higher fraction of two-sided sources in comparison to previous flux limited VLBI surveys.Comment: 29 pages, 21 figures - ApJ in press (10 Jan 2005 issue

    Electroviscous effects of simple electrolytes under shear

    Full text link
    On the basis of a hydrodynamical model analogous to that in critical fluids, we investigate the influences of shear flow upon the electrostatic contribution to the viscosity of binary electrolyte solutions in the Debye-H\"{u}ckel approximation. Within the linear-response theory, we reproduce the classical limiting law that the excess viscosity is proportional to the square root of the concentration of the electrolyte. We also extend this result for finite shear. An analytic expression of the anisotropic structure factor of the charge density under shear is obtained, and its deformation at large shear rates is discussed. A non-Newtonian effect caused by deformations of the ionic atmosphere is also elucidated for τDγ˙>1\tau_D\dot{\gamma}>1. This finding concludes that the maximum shear stress that the ionic atmosphere can support is proportional to λD3\lambda_D^{-3}, where γ˙\dot{\gamma}, λD\lambda_D and τD=λD2/D\tau_D=\lambda_D^2/D are, respectively, the shear rate, the Debye screening length and the Debye relaxation time with DD being the relative diffusivity at the infinite dilution limit of the electrolyte.Comment: 13pages, 2figure

    Red and Blue Shifted Broad Lines in Luminous Quasars

    Get PDF
    We have observed a sample of 22 luminous quasars, in the range 2.0<z<2.5, at 1.6 microns with the near-infrared (NIR) spectrograph FSPEC on the Multiple Mirror Telescope. Our sample contains 13 radio-loud and 9 radio-quiet objects. We have measured the systemic redshifts z_(sys) directly from the strong [O III]5007 line emitted from the narrow-line-region. From the same spectra, we have found that the non-resonance broad Hβ\beta lines have a systematic mean redward shift of 520+/-80 km/s with respect to systemic. Such a shift was not found in our identical analysis of the low-redshift sample of Boroson & Green. The amplitude of this redshift is comparable to half the expected gravitational redshift and transverse Doppler effects, and is consistent with a correlation between redshift differences and quasar luminosity. From data in the literature, we confirm that the high-ionization rest-frame ultraviolet broad lines are blueshifted ~550-1050 km/s from systemic, and that these velocity shifts systematically increase with ionization potential. Our results allow us to quantify the known bias in estimating the ionizing flux from the inter-galactic-medium J_(IGM) via the Proximity Effect. Using redshift measurements commonly determined from strong broad line species, like Ly\alpha or CIV1549, results in an over-estimation of J_(IGM) by factors of ~1.9-2.3. Similarly, corresponding lower limits on the density of baryon Omega_b will be over-estimated by factors of ~1.4-1.5. However, the low-ionization MgII2798 broad line is within ~50 km/s of systemic, and thus would be the line of choice for determining the true redshift of 1.0<z<2.2 quasars without NIR spectroscopy, and z>3.1 objects using NIR spectroscopy.Comment: 12 pages, Latex, 2 figures, 2 tables, Accepted for publication in ApJ Letter

    Star formation in z>1 3CR host galaxies as seen by Herschel

    Get PDF
    We present Herschel (PACS and SPIRE) far-infrared (FIR) photometry of a complete sample of z>1 3CR sources, from the Herschel GT project The Herschel Legacy of distant radio-loud AGN (PI: Barthel). Combining these with existing Spitzer photometric data, we perform an infrared (IR) spectral energy distribution (SED) analysis of these landmark objects in extragalactic research to study the star formation in the hosts of some of the brightest active galactic nuclei (AGN) known at any epoch. Accounting for the contribution from an AGN-powered warm dust component to the IR SED, about 40% of our objects undergo episodes of prodigious, ULIRG-strength star formation, with rates of hundreds of solar masses per year, coeval with the growth of the central supermassive black hole. Median SEDs imply that the quasar and radio galaxy hosts have similar FIR properties, in agreement with the orientation-based unification for radio-loud AGN. The star-forming properties of the AGN hosts are similar to those of the general population of equally massive non-AGN galaxies at comparable redshifts, thus there is no strong evidence of universal quenching of star formation (negative feedback) within this sample. Massive galaxies at high redshift may be forming stars prodigiously, regardless of whether their supermassive black holes are accreting or not.Comment: 30 pages, 13 figures, 4 tables. Accepted for publication in A&

    Generalized Hartree-Fock Theory for Interacting Fermions in Lattices: Numerical Methods

    Full text link
    We present numerical methods to solve the Generalized Hartree-Fock theory for fermionic systems in lattices, both in thermal equilibrium and out of equilibrium. Specifically, we show how to determine the covariance matrix corresponding to the Fermionic Gaussian state that optimally approximates the quantum state of the fermions. The methods apply to relatively large systems, since their complexity only scales quadratically with the number of lattice sites. Moreover, they are specially suited to describe inhomogenous systems, as those typically found in recent experiments with atoms in optical lattices, at least in the weak interaction regime. As a benchmark, we have applied them to the two-dimensional Hubbard model on a 10x10 lattice with and without an external confinement.Comment: 16 pages, 22 figure

    Salmonella Pathogenesis and Processing of Secreted Effectors by Caspase-3

    Get PDF
    The enteric pathogen Salmonella enterica serovar Typhimurium causes food poisoning resulting in gastroenteritis. The S. Typhimurium effector Salmonella invasion protein A (SipA) promotes gastroenteritis by functional motifs that trigger either mechanisms of inflammation or bacterial entry. During infection of intestinal epithelial cells, SipA was found to be responsible for the early activation of caspase-3, an enzyme that is required for SipA cleavage at a specific recognition motif that divided the protein into its two functional domains and activated SipA in a manner necessary for pathogenicity. Other caspase-3 cleavage sites identified in S. Typhimurium appeared to be restricted to secreted effector proteins, which indicates that this may be a general strategy used by this pathogen for processing of its secreted effectors

    Coexistent State of Charge Density Wave and Spin Density Wave in One-Dimensional Quarter Filled Band Systems under Magnetic Fields

    Full text link
    We theoretically study how the coexistent state of the charge density wave and the spin density wave in the one-dimensional quarter filled band is enhanced by magnetic fields. We found that when the correlation between electrons is strong the spin density wave state is suppressed under high magnetic fields, whereas the charge density wave state still remains. This will be observed in experiments such as the X-ray measurement.Comment: 7 pages, 15 figure

    Molecular Gas and the Host-Galaxy System of the z ~ 0.3 QSO PG 1700+518

    Get PDF
    The detection of CO(1→0) emission in the massive (i.e., MH ~ –26.13 mag), z ~ 0.3 host-galaxy system of the broad absorption line quasi-stellar object (QSO) PG1700+518 is reported. The host system has a CO luminosity of L'_CO ~ 1.4 × 10^(10) K km s^(–1) pc^2, and thus a star-forming molecular gas mass of M(H_2) ~ 6 × 10^(10) M_☉ (adopting an α = 4 M_☉[K km s^(–1) pc^2]^(–1)), making it one of the most molecular gas-rich Palomar-Green QSO hosts observed to date. New Hubble Space Telescope WFPC2 direct and NICMOS coronagraphic images show the highest resolution view yet of the host and companion. The new NICMOS image reveals the underlying, apparently tidally disrupted structure seen previously from high-resolution ground-based optical imaging. Light from the host galaxy is overwhelmed by the central point source in the WFPC2 images. The companion galaxy is well resolved in both data sets, and the WFPC2 provides for the first time a clear picture of the optically visible ring structure. The CO redshift is within the range of redshifts derived from optical QSO emission lines, thus the observed CO is associated with the QSO host. However, it cannot be ruled out that the companion has at least ~10^(10) M_☉ of molecular gas. Finally, if the far-infrared luminosity, which is 1/5 of the bolometric luminosity, is the luminosity of the starburst population, the star formation rate is estimated to be ~210 M_☉ yr^(–1). There is thus sufficient molecular gas in the QSO host galaxy to fuel both star formation and QSO activity for another ~10^8 yr. We speculate that we may be witnessing the fueling event in progress that resulted from a collision between the QSO host and the companion galaxy, and that there is an accompanying expulsion of material along our line of sight in the form of broad absorption line gas
    corecore