12,655 research outputs found
Cost analysis of composite fan blade manufacturing processes
The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items
Cost analysis of advanced turbine blade manufacturing processes
A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items
Electric field response of strongly correlated one-dimensional metals: a Bethe-Ansatz density functional theory study
We present a theoretical study on the response properties to an external
electric field of strongly correlated one-dimensional metals. Our investigation
is based on the recently developed Bethe-Ansatz local density approximation
(BALDA) to the density functional theory formulation of the Hubbard model. This
is capable of describing both Luttinger liquid and Mott-insulator correlations.
The BALDA calculated values for the static linear polarizability are compared
with those obtained by numerically accurate methods, such as exact (Lanczos)
diagonalization and the density matrix renormalization group, over a broad
range of parameters. In general BALDA linear polarizabilities are in good
agreement with the exact results. The response of the exact exchange and
correlation potential is found to point in the same direction of the perturbing
potential. This is well reproduced by the BALDA approach, although the fine
details depend on the specific parameterization for the local approximation.
Finally we provide a numerical proof for the non-locality of the exact exchange
and correlation functional.Comment: 8 pages and 8 figure
From ultrahigh to extreme field magnetic resonance: where physics, biology and medicine meet
International audienc
The structure of the graviton self-energy at finite temperature
We study the graviton self-energy function in a general gauge, using a hard
thermal loop expansion which includes terms proportional to T^4, T^2 and
log(T). We verify explicitly the gauge independence of the leading T^4 term and
obtain a compact expression for the sub-leading T^2 contribution. It is shown
that the logarithmic term has the same structure as the ultraviolet pole part
of the T=0 self-energy function. We argue that the gauge-dependent part of the
T^2 contribution is effectively canceled in the dispersion relations of the
graviton plasma, and present the solutions of these equations.Comment: 27 pages, 6 figure
Electronic properties of disordered corner-sharing tetrahedral lattices
We have examined the behaviour of noninteracting electrons moving on a
corner-sharing tetrahedral lattice into which we introduce a uniform (box)
distribution, of width W, of random on-site energies. We have used both the
relative localization length and the spectral rigidity to analyze the nature of
the eigenstates, and have determined both the mobility edge trajectories as a
function of W, and the critical disorder, Wc, beyond which all states are
localized. We find (i) that the mobility edge trajectories (energies Ec vs.
disorder W) are qualitatively different from those found for a simple cubic
lattice, and (ii) that the spectral rigidity is scale invariant at Wc and thus
provides a reliable method of estimating this quantity -- we find Wc/t=14.5. We
discuss our results in the context of the metal-to-insulator transition
undergone by LiAlyTi{2-y}O4 in a quantum site percolation model that also
includes the above-mentioned Anderson disorder, and show that the effects
produced by Anderson disorder are far less important than those produced by
quantum site percolation, at least in the determination of the doping
concentration at which the metal-to-insulator transition is predicted to occur
Composition Conditions for Classes of Analytic Functions
We prove that for classes of analytic functions tree composition condition
and composition condition coincide.Comment: 13 page
Перспективы использования меланинов лузги подсолнечника для очистки сточных вод пищевых производств от анионных азокрасителей
Изучены сорбционные свойства меланинов лузги подсолнечника по отношению к метиловому оранжевому. Установлено, что для исследованных образцов сорбционная активность по метиловому оранжевому составляет 302,1±1,8 мг/г. Для меланинов выявлено высокое сродство к веществам анионного типа. Полученные результаты определяют возможность разработки на основе меланинов сорбентов для очистки сточных вод пищевых производств от анионных моноазокрасителей.Studied are the sorption properties of melanins of sunflower husks in relation to to methyl orange. Discovered that for the samples studied the sorption activity with relation to to methyl-orange is 302,1±1,8 mg/g. . For melanin it was revealed a high affinity to substances of anionic type. The results obtained determine the possibility of development of melanin based sorbents for the purification of wastewater of food production from anionic azo dye
Validation of the inverted adsorption structure for free-base tetraphenyl porphyrin on Cu(111)
Utilising normal incidence X-ray standing waves we rigourously scrutinise the “inverted model” as the adsorption structure of free-base tetraphenyl porphyrin on Cu(111). We demonstrate that the iminic N atoms are anchored at near-bridge adsorption sites on the surface displaced laterally by 1.1 ± 0.2 Å in excellent agreement with previously published calculations
Optimized Effective Potential Model for the Double Perovskites Sr2-xYxVMoO6 and Sr2-xYxVTcO6
In attempt to explore half-metallic properties of the double perovskites
Sr2-xYxVMoO6 and Sr2-xYxVTcO6, we construct an effective low-energy model,
which describes the behavior of the t2g-states of these compounds. All
parameters of such model are derived rigorously on the basis of
first-principles electronic structure calculations. In order to solve this
model we employ the optimized effective potential method and treat the
correlation interactions in the random phase approximation. Although
correlation interactions considerably reduce the intraatomic exchange splitting
in comparison with the Hartree-Fock method, this splitting still substantially
exceeds the typical values obtained in the local-spin-density approximation
(LSDA), which alters many predictions based on the LSDA. Our main results are
summarized as follows: (i) all ferromagnetic states are expected to be
half-metallic. However, their energies are generally higher than those of the
ferrimagnetic ordering between V- and Mo/Tc-sites (except Sr2VMoO6); (ii) all
ferrimagnetic states are metallic (except fully insulating Y2VTcO6) and no
half-metallic antiferromagnetism has been found; (iii) moreover, many of the
ferrimagnetic structures appear to be unstable with respect to the spin-spiral
alignment. Thus, the true magnetic ground state of the most of these systems is
expected to be more complex. In addition, we discuss several methodological
issues related to the nonuniqueness of the effective potential for the magnetic
half-metallic and insulating states.Comment: 15 pages, 9 figure
- …