In attempt to explore half-metallic properties of the double perovskites
Sr2-xYxVMoO6 and Sr2-xYxVTcO6, we construct an effective low-energy model,
which describes the behavior of the t2g-states of these compounds. All
parameters of such model are derived rigorously on the basis of
first-principles electronic structure calculations. In order to solve this
model we employ the optimized effective potential method and treat the
correlation interactions in the random phase approximation. Although
correlation interactions considerably reduce the intraatomic exchange splitting
in comparison with the Hartree-Fock method, this splitting still substantially
exceeds the typical values obtained in the local-spin-density approximation
(LSDA), which alters many predictions based on the LSDA. Our main results are
summarized as follows: (i) all ferromagnetic states are expected to be
half-metallic. However, their energies are generally higher than those of the
ferrimagnetic ordering between V- and Mo/Tc-sites (except Sr2VMoO6); (ii) all
ferrimagnetic states are metallic (except fully insulating Y2VTcO6) and no
half-metallic antiferromagnetism has been found; (iii) moreover, many of the
ferrimagnetic structures appear to be unstable with respect to the spin-spiral
alignment. Thus, the true magnetic ground state of the most of these systems is
expected to be more complex. In addition, we discuss several methodological
issues related to the nonuniqueness of the effective potential for the magnetic
half-metallic and insulating states.Comment: 15 pages, 9 figure