9 research outputs found

    Characterization of Particles in Protein Solutions: Reaching the Limits of Current Technologies

    Get PDF
    Recent publications have emphasized the lack of characterization methods available for protein particles in a size range comprised between 0.1 and 10 μm and the potential risk of immunogenicity associated with such particles. In the present paper, we have investigated the performance of light obscuration, flow microscopy, and Coulter counter instruments for particle counting and sizing in protein formulations. We focused on particles 2–10 μm in diameter and studied the effect of silicon oil droplets originating from the barrel of pre-filled syringes, as well as the effect of high protein concentrations (up to 150 mg/ml) on the accuracy of particle characterization. Silicon oil was demonstrated to contribute significantly to the particle counts observed in pre-filled syringes. Inconsistent results were observed between different protein concentrations in the range 7.5–150 mg/ml for particles <10 μm studied by optical techniques (light obscuration and flow microscopy). However, the Coulter counter measurements were consistent across the same studied concentration range but required sufficient solution conductivity from the formulation buffer or excipients. Our results show that currently available technologies, while allowing comparisons between samples of a given protein at a fixed concentration, may be unable to measure particle numbers accurately in a variety of protein formulations, e.g., at high concentration in sugar-based formulations

    Detection and characterization of protein aggregates by fluorescence microscopy

    No full text
    Aggregation may compromise the stability as well as the biological activity of protein drugs. Detection of protein aggregates is needed in the process of protein characterization and during optimization of pharmaceutical formulations. This paper describes a technique, which consists of analysing protein aggregates by fluorescence microscopy after staining with the hydrophobic probe Nile Red. Dilution, filtration or other modifications of the sample are not needed. Assessment of aggregation was possible in highly concentrated protein samples (193 mg/ml). Fluorescence microscopy observations allowed the detection and characterization of protein aggregates not easily detected by spectroscopic techniques. Nile Red was shown to be very sensitive for the detection and analysis of immunoglobulin aggregates. Nile Red, Congo red and Thioflavine T stainings were compared. Nile Red and Thioflavine T fluorescence were colocalized. The diameter of immunoglobulin aggregates was determined, and the number of aggregates was correlated with 90 degrees light scattering measurements. Studies of human calcitonin aggregates brought to light new aspects of the human calcitonin aggregation mechanisms. Thus, Nile Red staining not only allows detection of very low levels of protein aggregates, but also contributes to a better understanding of the complex mechanisms governing protein aggregation

    Comparison of binding characteristics and in vitro activities of three inhibitors of vascular endothelial growth factor A.

    No full text
    The objectives of this study were to evaluate the relative binding and potencies of three inhibitors of vascular endothelial growth factor A (VEGF), used to treat neovascular age-related macular degeneration, and assess their relevance in the context of clinical outcome. Ranibizumab is a 48 kDa antigen binding fragment, which lacks a fragment crystallizable (Fc) region and is rapidly cleared from systemic circulation. Aflibercept, a 110 kDa fusion protein, and bevacizumab, a 150 kDa monoclonal antibody, each contain an Fc region. Binding affinities were determined using Biacore analysis. Competitive binding by sedimentation velocity analytical ultracentrifugation (SV-AUC) was used to support the binding affinities determined by Biacore of ranibizumab and aflibercept to VEGF. A bovine retinal microvascular endothelial cell (BREC) proliferation assay was used to measure potency. Biacore measurements were format dependent, especially for aflibercept, suggesting that biologically relevant, true affinities of recombinant VEGF (rhVEGF) and its inhibitors are yet to be determined. Despite this assay format dependency, ranibizumab appeared to be a very tight VEGF binder in all three formats. The results are also very comparable to those reported previously.1-3 At equivalent molar ratios, ranibizumab was able to displace aflibercept from preformed aflibercept/VEGF complexes in solution as assessed by SV-AUC, whereas aflibercept was not able to significantly displace ranibizumab from preformed ranibizumab/VEGF complexes. Ranibizumab, aflibercept, and bevacizumab showed dose-dependent inhibition of BREC proliferation induced by 6 ng/mL VEGF, with average IC50 values of 0.088 ± 0.032, 0.090 ± 0.009, and 0.500 ± 0.091 nM, respectively. Similar results were obtained with 3 ng/mL VEGF. In summary Biacore studies and SV-AUC solution studies show that aflibercept does not bind with higher affinity than ranibizumab to VEGF as recently reported,4 and both inhibitors appeared to be equipotent with respect to their ability to inhibit VEGF function
    corecore