117 research outputs found

    Manifold Cities: Social variables of urban areas in the UK

    Get PDF
    In the 21st century ongoing rapid urbanization highlights the need to gain deeper insights into the social structure of cities. While work on this challenge can profit from abundant data sources, the complexity of this data itself proves to be a challenge. In this paper we use diffusion maps, a manifold learning method, to discover hidden manifolds in the UK 2011 census data set. The census key statistics and quick statistics report 1450 different statistical features for each census output area. Here we focus primarily on the city of Bristol and the surrounding countryside, comprising 3490 of these output areas. Our analysis finds the main variables that span the census responses, highlighting that university student density and poverty are the most important explanatory variables of variation in census responses.Comment: 13 pages, 4 figure

    Dynamics of epidemic diseases on a growing adaptive network

    Get PDF
    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists

    Meta-food-chains as a many-layer epidemic process on networks

    Get PDF
    Notable recent works have focused on the multi-layer properties of coevolving diseases. We point out that very similar systems play an important role in population ecology. Specifically we study a meta food-web model that was recently proposed by Pillai et al. This model describes a network of species connected by feeding interactions, which spread over a network of spatial patches. Focusing on the essential case, where the network of feeding interactions is a chain, we develop an analytical approach for the computation of the degree distributions of colonized spatial patches for the different species in the chain. This framework allows us to address ecologically relevant questions. Considering configuration model ensembles of spatial networks, we find that there is an upper bound for the fraction of patches that a given species can occupy, which depends only on the networks mean degree. For a given mean degree there is then an optimal degree distribution that comes closest to the upper bound. Notably scale-free degree distributions perform worse than more homogeneous degree distributions if the mean degree is sufficiently high. Because species experience the underlying network differently the optimal degree distribution for one particular species is generally not the optimal distribution for the other species in the same food web. These results are of interest for conservation ecology, where, for instance, the task of selecting areas of old-growth forest to preserve in an agricultural landscape, amounts to the design of a patch network.Comment: 7 pages, 5 figure

    Impact of cyber-invasive species on a large ecological network

    Get PDF
    As impacts of introduced species cascade through trophic levels, they can cause indirect and counter-intuitive effects. To investigate the impact of invasive species at the network scale, we use a generalized food web model, capable of propagating changes through networks with a series of ecologically realistic criteria. Using data from a small British offshore island, we quantify the impacts of four virtual invasive species (an insectivore, a herbivore, a carnivore and an omnivore whose diet is based on a rat) and explore which clusters of species react in similar ways. We find that the predictions for the impacts of invasive species are ecologically plausible, even in large networks. Species in the same taxonomic group are similarly impacted by a virtual invasive species. However, interesting differences within a given taxonomic group can occur. The results suggest that some native species may be at risk from a wider range of invasives than previously believed. The implications of these results for ecologists and land managers are discussed

    Evaluation of the Accuracy of a Computer-Vision Based Crowd Monitoring System

    Get PDF
    Computer vision systems can be used to measure pedestrian flow rates, occupancy levels and queue times. It is difficult to assess the accuracy of such methods because the ground truth can be difficult to establish. Human counting is equally prone to error, even when using video recordings with no time constraints and the support of sophisticated software. In this report, we consider how errors may arise directly from the images recorded by the cameras, due to both occlusion of people and image distortion due to a fisheye lens. We also develop a statistical model of human counting errors and attempt to estimate human accuracy from data. Finally, we attempt to relate human and computer accuracy on the basis of simplifying statistical approximations

    Workflow Modelling of Construction Projects

    Get PDF
    This report details the work carried out by the Study Group on workflow modelling of con- struction projects. Data on the progress of about a hundred projects over a single five-year planning period were provided by Heathrow Airport (the client) and their four Tier 1 construction contrac- tors. These data are mapped and analysed. Several unusual features are discovered. For example, most projects undergo several tens of adjustments in their scope and price such that while most projects are technically completed under budget, the price and duration is significantly higher than originally planned. The main question addressed was whether an optimised scheduling of the project would lead to decreased costs and more rapid completion. First, a machine learning approach is used to gain insight onto which factors are most significant in predicting the final cost and duration of each project. If more data were available, these methods could be further exploited to allow for predictions to be made on which projects are likely to over-run or go over budget and to examine connections between projects at the subcontractor level. In addition to the data-centric approach, a complementary mathematical model was de- veloped to gain a better understanding of the effect of resource constraints on cost and price extension due to resource competition of concurrent projects, ignoring the confound- ing effect of scope creep seen in the data. The model takes the form of a discrete time stochastic simulation, whose parameters are fit to the existing data. Tentative conclusions from the model indicate that better outcomes can be achieved by spreading out project start dates, and by prioritising completion of smaller projects. While more data is needed to validate the model, the results suggested that gains can be made if more thoughtful scheduling of projects is implemented, and also if the prioritisation of projects is monitored and adjusted intelligently. Our major recommendation to Heathrow Airport is to collect or retrieve more data, as outlined in the report, so that both models can be made more realistic and useful. This would allow Heathrow Airport and their contractors to develop and test strategies to make the system more efficient, ultimately saving time and money

    Observation of the B0 → ρ0ρ0 decay from an amplitude analysis of B0 → (π+π−)(π+π−) decays

    Get PDF
    Proton–proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb−1 , are analysed to search for the charmless B0→ρ0ρ0 decay. More than 600 B0→(π+π−)(π+π−) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0→ρ0ρ0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0→ρ0ρ0 decays yielding a longitudinally polarised final state is measured to be fL=0.745−0.058+0.048(stat)±0.034(syst) . The B0→ρ0ρ0 branching fraction, using the B0→ϕK⁎(892)0 decay as reference, is also reported as B(B0→ρ0ρ0)=(0.94±0.17(stat)±0.09(syst)±0.06(BF))×10−6

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar

    Get PDF
    The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.25±0.67B)×103B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.25 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2.The production of the ηc(1S)\eta _c (1S) state in proton-proton collisions is probed via its decay to the ppp\overline{p} final state with the LHCb detector, in the rapidity range 2.06.5GeV/c2.0 6.5 \mathrm{{\,GeV/}{ c}} . The cross-section for prompt production of ηc(1S)\eta _c (1S) mesons relative to the prompt J/ψ{{ J}}/{\psi } cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.74\, \pm \,0.29\, \pm \, 0.28\, \pm \,0.18 _{{\mathcal{B}}} at a centre-of-mass energy s=7 TeV{\sqrt{s}} = 7 {~\mathrm{TeV}} using data corresponding to an integrated luminosity of 0.7 fb1^{-1} , and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{{\mathcal{B}}} at s=8 TeV{\sqrt{s}} = 8 {~\mathrm{TeV}} using 2.0 fb1^{-1} . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta _c (1S) and J/ψ{{ J}}/{\psi } decays to the ppp\overline{p} final state. In addition, the inclusive branching fraction of b{b} -hadron decays into ηc(1S)\eta _c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.29±0.67B)×103{\mathcal{B}}( b {\rightarrow } \eta _c X ) = (4.88\, \pm \,0.64\, \pm \,0.29\, \pm \, 0.67 _{{\mathcal{B}}}) \times 10^{-3} , where the third uncertainty includes also the uncertainty on the J/ψ{{ J}}/{\psi } inclusive branching fraction from b{b} -hadron decays. The difference between the J/ψ{{ J}}/{\psi } and ηc(1S)\eta _c (1S) meson masses is determined to be 114.7±1.5±0.1MeV ⁣/c2114.7 \pm 1.5 \pm 0.1 {\mathrm {\,MeV\!/}c^2} .The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.29±0.67B)×103B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.29 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2
    corecore