411 research outputs found
BCS-BEC Crossover in Atomic Fermi Gases with a Narrow Resonance
We determine the effects on the BCS-BEC crossover of the energy dependence of
the effective two-body interaction, which at low energies is determined by the
effective range. To describe interactions with an effective range of either
sign, we consider a single-channel model with a two-body interaction having an
attractive square well and a repulsive square barrier. We investigate the
two-body scattering properties of the model, and then solve the Eagles-Leggett
equations for the zero temperature crossover, determining the momentum
dependent gap and the chemical potential self-consistently. From this we
investigate the dependence of the crossover on the effective range of the
interaction.Comment: 12 pages, 14 figure
Collective oscillations of a trapped Fermi gas near a Feshbach resonance
The frequencies of the collective oscillations of a harmonically trapped
Fermi gas interacting with large scattering lengths are calculated at zero
temperature using hydrodynamic theory. Different regimes are considered,
including the molecular Bose-Einstein condensate and the unitarity limit for
collisions. We show that the frequency of the radial compressional mode in an
elongated trap exhibits a pronounced non monotonous dependence on the
scattering length, reflecting the role of the interactions in the equation of
state.Comment: 3 pages, including 1 figur
Analytical Results for Cold Asymmetrical Fermion Superfluids at the Mean-Field Level
We present the analytical results at the mean-field level for the
asymmetrical fermion system with attractive contact interaction at the zero
temperature. The results can be expressed in terms of linear combinations of
the elliptic integrals of the first and second kinds. In the limit of small gap
parameter, we discuss how the asymmetry in fermion species affects the phases
of the ground state. In the limit of large gap parameter, we show that two
candidate phases are competing for the system's ground state. The Sarma phase
containing a pure Fermi fluid and a mixed condensate is favored at large degree
of asymmetry. The separated phase consisting of a pure Fermi fluid and a boson
condensate supports the system at smaller degree of asymmetry. The two phases
are degenerate in the limit of infinite pairing gap.Comment: 23 pages, no figur
Pair Wave Functions in Atomic Fermi Condensates
Recent experiments have observed condensation behavior in a strongly
interacting system of fermionic atoms. We interpret these observations in terms
of a mean-field version of resonance superfluidity theory. We find that the
objects condensed are not bosonic molecules composed of bound fermion pairs,
but are rather spatially correlated Cooper pairs whose coherence length is
comparable to the mean spacing between atoms. We propose experiments that will
help to further probe these novel pairs
The potential energy of a K Fermi gas in the BCS-BEC crossover
We present a measurement of the potential energy of an ultracold trapped gas
of K atoms in the BCS-BEC crossover and investigate the temperature
dependence of this energy at a wide Feshbach resonance, where the gas is in the
unitarity limit. In particular, we study the ratio of the potential energy in
the region of the unitarity limit to that of a non-interacting gas, and in the
T=0 limit we extract the universal many-body parameter . We find ; this value is consistent with previous measurements
using Li atoms and also with recent theory and Monte Carlo calculations.
This result demonstrates the universality of ultracold Fermi gases in the
strongly interacting regime
Magnetic field control of elastic scattering in a cold gas of fermionic lithium atoms
We study elastic collisions in an optically trapped spin mixture of fermionic
lithium atoms in the presence of magnetic fields up to 1.5kG by measuring
evaporative loss. Our experiments confirm the expected magnetic tunability of
the scattering length by showing the main features of elastic scattering
according to recent calculations. We measure the zero crossing of the
scattering length that is associated with a predicted Feshbach resonance at
530(3)G. Beyond the resonance we observe the expected large cross section in
the triplet scattering regime
Observation of the Pairing Gap in a Strongly Interacting Fermi Gas
We study fermionic pairing in an ultracold two-component gas of Li atoms
by observing an energy gap in the radio-frequency excitation spectra. With
control of the two-body interactions via a Feshbach resonance we demonstrate
the dependence of the pairing gap on coupling strength, temperature, and Fermi
energy. The appearance of an energy gap with moderate evaporative cooling
suggests that our full evaporation brings the strongly interacting system deep
into a superfluid state.Comment: 18 pages, 3 figure
General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas
We show that the Lagrangian for interacting nonrelativistic particles can be
coupled to an external gauge field and metric tensor in a way that exhibits a
nonrelativistic version of general coordinate invariance. We explore the
consequences of this invariance on the example of the degenerate Fermi gas at
infinite scattering length, where conformal invariance also plays an important
role. We find the most general effective Lagrangian consistent with both
general coordinate and conformal invariance to leading and next-to-leading
orders in the momentum expansion. At the leading order the Lagrangian contains
one phenomenological constant and reproduces the results of the Thomas-Fermi
theory and superfluid hydrodynamics. At the next-to-leading order there are two
additional constants. We express various physical quantities through these
constants.Comment: 33 pages, 2 figures; v2: small typos fixed, references adde
Exploring the BEC-BCS Crossover with an Ultracold Gas of Li Atoms
We present an overview of our recent measurements on the crossover from a
Bose-Einstein condensate of molecules to a Bardeen-Cooper-Schrieffer
superfluid. The experiments are performed on a two-component spin-mixture of
Li atoms, where a Fesh\-bach resonance serves as the experimental key to
tune the s-wave scattering length and thus to explore the various interaction
regimes. In the BEC-BCS crossover, we have characterized the interaction energy
by measuring the size of the trapped gas, we have studied collective excitation
modes, and we have observed the pairing gap. Our observations provide strong
evidence for superfluidity in the strongly interacting Fermi gas.Comment: Proceedings of ICAP-2004 (Rio de Janeiro). Review on Innsbruck
BEC-BCS crossover experiments with updated Feshbach resonance positio
Precision Measurements of Collective Oscillations in the BEC-BCS Crossover
We report on precision measurements of the frequency of the radial
compression mode in a strongly interacting, optically trapped Fermi gas of Li-6
atoms. Our results allow for a test of theoretical predictions for the equation
of state in the BEC-BCS crossover. We confirm recent quantum Monte-Carlo
results and rule out simple mean-field BCS theory. Our results show the
long-sought beyond-mean-field effects in the strongly interacting BEC regime.Comment: improved discussion of small ellipticity and anharmonicity
correction
- …