16 research outputs found

    Implications of the Top Quark Mass Measurement for the CKM Parameters, xsx_s and CP Asymmetries

    Get PDF
    Motivated by the recent determination of the top quark mass by the CDF collaboration, \mt =174 \pm 10 ^{+13}_{-12} GeV, we review and update the constraints on the parameters of the quark flavour mixing matrix VCKMV_{CKM} in the standard model. In performing our fits, we use inputs from the measurements of the following quantities: (i) \abseps, the CP-violating parameter in KK decays, (ii) \delmd, the mass difference due to the \bdbdbar\ mixing, (iii) the matrix elements \absvcb and \absvub, and (iv) BB-hadron lifetimes. We find that the allowed region of the unitarity triangle is very large, mostly due to theoretical uncertainties. (This emphasizes the importance of measurements of CP-violating rate asymmetries in the BB system.) Nevertheless, the present data do somewhat restrict the allowed values of the coupling constant product fBdB^Bdf_{B_d}\sqrt{\hat{B}_{B_d}} and the renormalization-scale invariant bag constant B^K\hat{B}_K. With the updated CKM matrix we present the currently-allowed range of the ratio Vtd/Vts\vert V_{td}/V_{ts} \vert, as well as the standard model predictions for the \bsbsbar\ mixing parameter \xs and the quantities sin2α\sin 2\alpha, sin2β\sin 2\beta and sin2γ\sin^2\gamma, which characterize the CP-asymmetries in BB-decays. The ALEPH collaboration has recently reported a significant improvement on the lower limit on the \bs-\bsb mass difference, ΔMs/ΔMd>11.3\Delta M_s/\Delta M_d > 11.3 (95\% C.L.). This has interesting consequences for the CKM parameters which are also worked out. NOTE: this is a revised and updated version of our previous paper.Comment: LaTeX, 27 pages, 16 uuencoded figures (enclosed), CERN-TH.7398/94, UdeM-GPP-TH-94-0

    Fractal dimension and degree of order in sequential deposition of mixture

    Full text link
    We present a number models describing the sequential deposition of a mixture of particles whose size distribution is determined by the power-law p(x)αxα1p(x) \sim \alpha x^{\alpha-1}, xlx\leq l . We explicitly obtain the scaling function in the case of random sequential adsorption (RSA) and show that the pattern created in the long time limit becomes scale invariant. This pattern can be described by an unique exponent, the fractal dimension. In addition, we introduce an external tuning parameter beta to describe the correlated sequential deposition of a mixture of particles where the degree of correlation is determined by beta, while beta=0 corresponds to random sequential deposition of mixture. We show that the fractal dimension of the resulting pattern increases as beta increases and reaches a constant non-zero value in the limit β\beta \to \infty when the pattern becomes perfectly ordered or non-random fractals.Comment: 16 pages Latex, Submitted to Phys. Rev.

    Leptonic and Semileptonic Decays of Charm and Bottom Hadrons

    Get PDF
    We review the experimental measurements and theoretical descriptions of leptonic and semileptonic decays of particles containing a single heavy quark, either charm or bottom. Measurements of bottom semileptonic decays are used to determine the magnitudes of two fundamental parameters of the standard model, the Cabibbo-Kobayashi-Maskawa matrix elements VcbV_{cb} and VubV_{ub}. These parameters are connected with the physics of quark flavor and mass, and they have important implications for the breakdown of CP symmetry. To extract precise values of Vcb|V_{cb}| and Vub|V_{ub}| from measurements, however, requires a good understanding of the decay dynamics. Measurements of both charm and bottom decay distributions provide information on the interactions governing these processes. The underlying weak transition in each case is relatively simple, but the strong interactions that bind the quarks into hadrons introduce complications. We also discuss new theoretical approaches, especially heavy-quark effective theory and lattice QCD, which are providing insights and predictions now being tested by experiment. An international effort at many laboratories will rapidly advance knowledge of this physics during the next decade.Comment: This review article will be published in Reviews of Modern Physics in the fall, 1995. This file contains only the abstract and the table of contents. The full 168-page document including 47 figures is available at http://charm.physics.ucsb.edu/papers/slrevtex.p

    VubV_{ub} from the Hadron Energy Spectrum in Inclusive Semileptonic B Decays

    Full text link
    A measurement of the hadron energy spectrum in inclusive semileptonic BB decays is proposed as a viable method for extracting Vub|V_{ub}|. Compared to the traditional energy spectrum of the charged lepton, the hadron energy spectrum exhibits kinematical advantages such as a wider energy window and a larger signal branching fraction. It is emphasized that the hadron energy spectrum method is most suited for symmetric BB factories, such as CLEO. The hadron energy distribution is calculated in the approach of the Altarelli et al. model and of the heavy-quark effective field theory. In both methods, perturbative QCD corrections, the Fermi motion of the bb-quark in the BB-meson, and the recoil momentum of the BB-meson (stemming from the Υ(4S)\Upsilon(4S) resonance) are taken into account. We have found excellent agreement between the spectra calculated in both methods, especially in the relevant kinematical region below the charmed meson threshold. The theoretical error to Vub|V_{ub}|, which is dominated by the uncertainty of the bb-quark mass, is estimated to be at the ±12%\pm 12 \% level.Comment: 16 pages, 4 Figures included in the text (uses epsfig.sty), 1 tabl

    Determination of |Vcb| using the semileptonic decay \bar{B}^0 --> D^{*+}e^-\bar{\nu}

    Full text link
    We present a measurement of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vcb| using a 10.2 fb^{-1} data sample recorded at the \Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e^+e^- storage ring. By extrapolating the differential decay width of the \bar{B}^0 --> D^{*+}e^-\bar{\nu} decay to the kinematic limit at which the D^{*+} is at rest with respect to the \bar{B}^0, we extract the product of |Vcb| with the normalization of the decay form factor F(1), |Vcb |F(1)= (3.54+/-0.19+/-0.18)x10^{-2}, where the first error is statistical and the second is systematic. A value of |Vcb| = (3.88+/-0.21+/-0.20+/-0.19)x10^{-2} is obtained using a theoretical calculation of F(1), where the third error is due to the theoretical uncertainty in the value of F(1). The branching fraction B(\bar{B}^0 --> D^{*+}e^-\bar{\nu}) is measured to be (4.59+/-0.23+/-0.40)x10^{-2}.Comment: 20 pages, 6 figures, elsart.cls, submitted to PL

    Dislocation multi-junctions and strain hardening

    Get PDF
    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals

    Semileptonic Meson Decays in the Quark Model: An Update

    Get PDF
    We present the predictions of ISGW2, an update of the ISGW quark model for semileptonic meson decays. The updated model incorporates a number of features which should make it more reliable, including the constraints imposed by Heavy Quark Symmetry, hyperfine distortions of wavefunctions, and form factors with more realistic high recoil behaviors.Comment: All text and tables contained in the ".latex" file and all figures (14) contained in the ".uu" file

    Measurement of the B -> D^* l nu Branching Fractions and |Vcb|

    Get PDF
    We study the exclusive semileptonic B meson decays B- -> D*0 l- nu and B0 -> D*+ l- nu using data collected with the CLEO II detector at CESR. We present measurements of the branching fractions B(B0 -> D*+ l-nu) = 0.5/f00* [4.49+/-0.32+/-0.39]% and B(B- -> D*0 l-nu) = 0.5/f+-*[5.13+/-0.54+/-0.64]%, where f00 and f+- are the neutral and charged B meson production fractions at the Upsilon(4s) resonance. Assuming isospion invariance and taking the charged to neutral B meson lifetimes measured at higher energy machines, we determine the ratio f+-/f00=1.04+/-0.14+/-0.13+-/-0.10; further assuming f+- + f00 = 1 we also determine the partial width G(B->D* l nu) = 29.9+/-1.9+/-2.7+/-2.0 ns-1 (independent of f+-/f00). From this partial width we calculate B -> D* l nu branching fractions that do not depend on f+-/f00, nor the individual B lifetimes, but only on the charged to neutral lifetime ratio. The product of the CKM matrix element |Vcb| times the normalization of the decay form factor at the point of zero recoil of the D* meson, F(y=1), is determined from a linear fit to the combined differential decay rate of the exclusive B->D* l nu decays: |Vcb|F(y) = 0.0351 +/- 0.0019 +/- 0.0018 +/- 0.0008. Using theoretical calculations of the form factor normalization we extract a value for |Vcb|. LATEX (REVTEX style) file with uuencoded figures attached (uses PSBOX). Available on WWW http://w4.lns.cornell.edu/public/CLNS/Comment: 42 pages,CLNS 94/1285, CLEO 94-2

    Altered H3 histone acetylation impairs high-fidelity DNA repair to promote cerebellar degeneration in spinocerebellar ataxia type 7.

    No full text
    A common mechanism in inherited ataxia is a vulnerability of DNA damage. Spinocerebellar ataxia type 7 (SCA7) is a CAG-polyglutamine-repeat disorder characterized by cerebellar and retinal degeneration. Polyglutamine-expanded ataxin-7 protein incorporates into STAGA co-activator complex and interferes with transcription by altering histone acetylation. We performed chromatic immunoprecipitation sequencing ChIP-seq on cerebellum from SCA7 mice and observed increased H3K9-promoter acetylation in DNA repair genes, resulting in increased expression. After detecting increased DNA damage in SCA7 cells, mouse primary cerebellar neurons, and patient stem-cell-derived neurons, we documented reduced homology-directed repair (HDR) and single-strand annealing (SSA). To evaluate repair at endogenous DNA in native chromosome context, we modified linear amplification-mediated high-throughput genome-wide translocation sequencing and found that DNA translocations are less frequent in SCA7 models, consistent with decreased HDR and SSA. Altered DNA repair function in SCA7 may predispose the subject to excessive DNA damage, leading to neuron demise and highlights DNA repair as a therapy target
    corecore