54 research outputs found

    Searching for effects caused by thunderstorms in midlatitude sporadic E layers

    Get PDF
    Possible thunderstorm - sporadic E (Es) layer coupling effects are investigated during two measurement periods, one in 2013 and one in 2014. The analysis was based on ionospheric observations obtained from a Digisonde at Pruhonice, the Czech Republic, an ionosonde at Nagycenk, Hungary, and a 3.59 MHz five-point continuous HF Doppler system located in the western part of the Czech Republic. The latter is capable of detecting ionospheric wave-like variations caused by neutral atmospheric waves generated by thunderstorms. The present study searches for possible impacts on Es layers caused by the presence of two active thunderstorms: one passing across the Czech Republic on June 20, 2013 (19:00 - 01:00 LT), and one through Hungary on July 30, 2014 (11:00 - 01:00 LT). During these two time periods, presence and parameters of Es layer were inferred from ionograms, recorded every minute at Pruhonice and every two minutes at Nagycenk, whereas concurrent lightning activity was monitored by the LINET detection network. In addition, transient luminous events (TLEs) were also observed during both nights from Sopron, Hungary and from Nydek, the Czech Republic. A noticeable fact was the reduction and disappearance of the ongoing Es layer activity during part of the time in both of the traversing thunderstorms. The analysis indicated that the critical frequency foEs dropped below ionosonde detection levels in both cases, possibly because of thunderstorm activity effects. This option, however, needs more case studies in order to be further substantiated

    Effect of Upstream ULF Waves on the Energetic Ion Diffusion at the Earth's Foreshock. II. Observations

    Get PDF
    This study reports observations of energetic ions upstream of the Earth’s quasi-parallel bow shock by Cluster at times when interspacecraft separation distances were larg

    Effects of Energetic Solar Emissions on the Earth–Ionosphere Cavity of Schumann Resonances

    Get PDF
    © 2016, Springer Science+Business Media Dordrecht. Schumann resonances (SR) are the electromagnetic oscillations of the spherical cavity bounded by the electrically conductive Earth and the conductive but dissipative lower ionosphere (Schumann in Z Naturforsch A 7:6627–6628, 1952). Energetic emissions from the Sun can exert a varied influence on the various parameters of the Earth’s SR: modal frequencies, amplitudes and dissipation parameters. The SR response at multiple receiving stations is considered for two extraordinary solar events from Solar Cycle 23: the Bastille Day event (July 14, 2000) and the Halloween event (October/November 2003). Distinct differences are noted in the ionospheric depths of penetration for X-radiation and solar protons with correspondingly distinct signs of the frequency response. The preferential impact of the protons in the magnetically unshielded polar regions leads to a marked anisotropic frequency response in the two magnetic field components. The general immunity of SR amplitudes to these extreme external perturbations serves to remind us that the amplitude parameter is largely controlled by lightning activity within the Earth–ionosphere cavity
    corecore